Last updated: 2021-10-12

Checks: 7 0

Knit directory: SMF/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20190719) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version fc62fd8. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    analysis/.DS_Store
    Ignored:    data/.DS_Store
    Ignored:    data/external_data/

Untracked files:
    Untracked:  analysis/sparse_smoothing.Rmd
    Untracked:  data/luis/
    Untracked:  output/flash_on_cmc2_reduced.rds
    Untracked:  output/flash_on_cmc2_reduced_2000kb.rds
    Untracked:  output/wave_flash_on_cmc2_reduced_2000kb.rds

Unstaged changes:
    Modified:   analysis/index.Rmd
    Modified:   analysis/luis_data.Rmd
    Modified:   analysis/smooth_flash.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/joint_factoranalysis.Rmd) and HTML (docs/joint_factoranalysis.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd fc62fd8 Dongyue Xie 2021-10-12 wflow_publish(“analysis/joint_factoranalysis.Rmd”)
Rmd 03ceb24 DongyueXie 2021-10-11 add

Introduction

Here we study if the joint factor analysis could recover the co-varying pattern of the two functions.

Gaussian case

set.seed(123)
n = 120
p = 256
K= 3
L = matrix(rnorm(n*K),ncol=K)

FF = matrix(1, nrow=p, ncol=K)
FF[(p/8*1):(p/8*2),1] = 5
FF[(p/8*3):(p/8*4),2] = 5
FF[(p/8*5):(p/8*7),3] = 5

FFF = rbind(FF,FF)
s = 0.5
y = tcrossprod(L,FFF) + matrix(rnorm(n*p*2,0,s),nrow=n,ncol=p*2)

par(mfrow=c(3,1))
plot(FF[,1],type='l')
plot(FF[,2],type='l')
plot(FF[,3],type='l')

par(mfrow=c(3,1))
plot(FFF[,1],type='l')
abline(v=p,lty=2)
plot(FFF[,2],type='l')
abline(v=p,lty=2)
plot(FFF[,3],type='l')
abline(v=p,lty=2)

source('code/smooth_flash.R')
Loading required package: usethis
Loading flashr

Attaching package: 'testthat'
The following object is masked from 'package:devtools':

    test_file
Loading required package: MASS
WaveThresh: R wavelet software, release 4.6.8, installed
Copyright Guy Nason and others 1993-2016
Note: nlevels has been renamed to nlevelsWT

Attaching package: 'wavethresh'
The following object is masked from 'package:devtools':

    wd
source('code/wave_ebmf.R')
Loading flashr
ploter = function(EF,main){
  par(mfrow=c(3,1))
  for(k in 1:ncol(EF)){
    plot(EF[,k],ylab=paste('f',k,sep=''),main=ifelse(k==1,main,""),type='l')
  }
}
ploter2 = function(EF,main){
  p = nrow(EF)
  par(mfrow=c(3,1))
  for(k in 1:ncol(EF)){
    plot(EF[,k],ylab=paste('f',k,sep=''),main=ifelse(k==1,main,""),type='l')
    abline(v=p/2,lty=2)
  }
}

Let’s first take a look of single function case:

library(tictoc)
seed=12345
tic();fit.flash = flash(y[,1:p],var_type = 'by_row',seed = seed);toc()
Fitting factor/loading 1 (stop when difference in obj. is < 1.00e-02):
  Iteration      Objective   Obj Diff
          1      -62031.23        Inf
          2      -61963.63   6.76e+01
          3      -61919.03   4.46e+01
          4      -61892.79   2.62e+01
          5      -61878.84   1.39e+01
          6      -61871.85   6.99e+00
          7      -61868.43   3.41e+00
          8      -61866.78   1.65e+00
          9      -61865.98   7.99e-01
         10      -61865.60   3.86e-01
         11      -61865.41   1.87e-01
         12      -61865.32   9.06e-02
         13      -61865.27   4.39e-02
         14      -61865.25   2.13e-02
         15      -61865.24   1.03e-02
         16      -61865.24   5.02e-03
Performing nullcheck...
  Deleting factor 1 decreases objective by 1.62e+04. Factor retained.
  Nullcheck complete. Objective: -61865.24
Fitting factor/loading 2 (stop when difference in obj. is < 1.00e-02):
  Iteration      Objective   Obj Diff
          1      -45993.58        Inf
          2      -45983.27   1.03e+01
          3      -45980.13   3.14e+00
          4      -45978.99   1.14e+00
          5      -45978.58   4.09e-01
          6      -45978.44   1.47e-01
          7      -45978.38   5.31e-02
          8      -45978.36   1.92e-02
          9      -45978.36   6.91e-03
Performing nullcheck...
  Deleting factor 2 decreases objective by 1.59e+04. Factor retained.
  Nullcheck complete. Objective: -45978.36
Fitting factor/loading 3 (stop when difference in obj. is < 1.00e-02):
  Iteration      Objective   Obj Diff
          1      -28272.62        Inf
          2      -28268.90   3.72e+00
          3      -28268.89   5.75e-03
Performing nullcheck...
  Deleting factor 3 decreases objective by 1.77e+04. Factor retained.
  Nullcheck complete. Objective: -28268.89
Fitting factor/loading 4 (stop when difference in obj. is < 1.00e-02):
  Iteration      Objective   Obj Diff
          1      -28321.78        Inf
          2      -28308.51   1.33e+01
          3      -28306.89   1.62e+00
          4      -28306.31   5.75e-01
          5      -28305.98   3.37e-01
          6      -28305.69   2.85e-01
          7      -28305.38   3.12e-01
          8      -28304.97   4.13e-01
          9      -28303.90   1.07e+00
         10      -28294.73   9.17e+00
         11      -28294.42   3.17e-01
         12      -28294.42   0.00e+00
Performing nullcheck...
  Deleting factor 4 increases objective by 2.55e+01. Factor zeroed out.
  Nullcheck complete. Objective: -28268.89
0.725 sec elapsed
tic();fit.dwt = wave_ebmf(y[,1:p]);toc()
[1] "Fitting dimension  1"
[1] "Iteration  1 : obj  -61233.381"
[1] "Iteration  2 : obj  -61157.953"
[1] "Iteration  3 : obj  -61109.053"
[1] "Iteration  4 : obj  -61080.973"
[1] "Iteration  5 : obj  -61066.273"
[1] "Iteration  6 : obj  -61058.984"
[1] "Iteration  7 : obj  -61055.466"
[1] "Iteration  8 : obj  -61053.789"
[1] "Iteration  9 : obj  -61052.994"
[1] "Iteration  10 : obj  -61052.619"
[1] "Iteration  11 : obj  -61052.442"
[1] "Iteration  12 : obj  -61052.359"
[1] "Iteration  13 : obj  -61052.32"
[1] "Iteration  14 : obj  -61052.301"
[1] "Iteration  15 : obj  -61052.293"
[1] "Performing nullcheck"
[1] "Deleting factor  1  decreases objective by  17049.363"
[1] "Fitting dimension  2"
[1] "Iteration  1 : obj  -44225.684"
[1] "Iteration  2 : obj  -44215.094"
[1] "Iteration  3 : obj  -44211.735"
[1] "Iteration  4 : obj  -44210.574"
[1] "Iteration  5 : obj  -44210.174"
[1] "Iteration  6 : obj  -44210.036"
[1] "Iteration  7 : obj  -44209.989"
[1] "Iteration  8 : obj  -44209.972"
[1] "Iteration  9 : obj  -44209.966"
[1] "Performing nullcheck"
[1] "Deleting factor  2  decreases objective by  16842.324"
[1] "Fitting dimension  3"
[1] "Iteration  1 : obj  -25394.505"
[1] "Iteration  2 : obj  -25391.799"
[1] "Iteration  3 : obj  -25391.799"
[1] "Performing nullcheck"
[1] "Deleting factor  3  decreases objective by  18818.167"
[1] "Fitting dimension  4"
[1] "Iteration  1 : obj  -25455.565"
[1] "Iteration  2 : obj  -25435.391"
[1] "Iteration  3 : obj  -25425.674"
[1] "Iteration  4 : obj  -25413.52"
[1] "Iteration  5 : obj  -25392.367"
[1] "factor zeroed out"
[1] "Performing nullcheck"
[1] "Deleting factor  4  increases objective by  0.568"
1.235 sec elapsed
ploter(fit.flash$ldf$f,main='flash')

ploter(fit.dwt$ldf$f,main='wave_flash')

Try to use different initialization

fit.dwt = wave_ebmf(y[,1:p],init_fn = 'udv_svd')
[1] "Fitting dimension  1"
[1] "Iteration  1 : obj  -61229.797"
[1] "Iteration  2 : obj  -61155.398"
[1] "Iteration  3 : obj  -61107.483"
[1] "Iteration  4 : obj  -61080.114"
[1] "Iteration  5 : obj  -61065.836"
[1] "Iteration  6 : obj  -61058.77"
[1] "Iteration  7 : obj  -61055.363"
[1] "Iteration  8 : obj  -61053.74"
[1] "Iteration  9 : obj  -61052.971"
[1] "Iteration  10 : obj  -61052.608"
[1] "Iteration  11 : obj  -61052.437"
[1] "Iteration  12 : obj  -61052.356"
[1] "Iteration  13 : obj  -61052.319"
[1] "Iteration  14 : obj  -61052.301"
[1] "Iteration  15 : obj  -61052.292"
[1] "Performing nullcheck"
[1] "Deleting factor  1  decreases objective by  17049.363"
[1] "Fitting dimension  2"
[1] "Iteration  1 : obj  -44227.663"
[1] "Iteration  2 : obj  -44215.804"
[1] "Iteration  3 : obj  -44211.979"
[1] "Iteration  4 : obj  -44210.657"
[1] "Iteration  5 : obj  -44210.201"
[1] "Iteration  6 : obj  -44210.044"
[1] "Iteration  7 : obj  -44209.99"
[1] "Iteration  8 : obj  -44209.971"
[1] "Iteration  9 : obj  -44209.964"
[1] "Performing nullcheck"
[1] "Deleting factor  2  decreases objective by  16842.326"
[1] "Fitting dimension  3"
[1] "Iteration  1 : obj  -25394.506"
[1] "Iteration  2 : obj  -25391.8"
[1] "Iteration  3 : obj  -25391.8"
[1] "Performing nullcheck"
[1] "Deleting factor  3  decreases objective by  18818.164"
[1] "Fitting dimension  4"
[1] "Iteration  1 : obj  -25455.85"
[1] "Iteration  2 : obj  -25435.637"
[1] "Iteration  3 : obj  -25425.166"
[1] "Iteration  4 : obj  -25412.613"
[1] "Iteration  5 : obj  -25392.242"
[1] "factor zeroed out"
[1] "Performing nullcheck"
[1] "Deleting factor  4  increases objective by  0.443"
ploter(fit.dwt$ldf$f,main='wave_flash, svd init')

Modify \(L\) so that there columns are independent

set.seed(123)
L = cbind(c(rep(1,n/3),rep(0,n/3*2)),
          c(rep(0,n/3),rep(-1,n/3),rep(0,n/3)),
          c(rep(0,n/3*2),rep(1,n/3)))
s = 0.5
y = tcrossprod(L,FFF) + matrix(rnorm(n*p*2,0,s),nrow=n,ncol=p*2)
seed=12345
tic();fit.flash = flash(y[,1:p],var_type = 'by_row',seed = seed);toc()
Fitting factor/loading 1 (stop when difference in obj. is < 1.00e-02):
  Iteration      Objective   Obj Diff
          1      -54425.89        Inf
          2      -53605.18   8.21e+02
          3      -52008.60   1.60e+03
          4      -50504.65   1.50e+03
          5      -50181.38   3.23e+02
          6      -50167.70   1.37e+01
          7      -50167.39   3.14e-01
          8      -50167.38   6.69e-03
Performing nullcheck...
  Deleting factor 1 decreases objective by 1.86e+04. Factor retained.
  Nullcheck complete. Objective: -50167.38
Fitting factor/loading 2 (stop when difference in obj. is < 1.00e-02):
  Iteration      Objective   Obj Diff
          1      -41470.93        Inf
          2      -41468.27   2.66e+00
          3      -41463.14   5.13e+00
          4      -41441.62   2.15e+01
          5      -41352.66   8.90e+01
          6      -41008.11   3.45e+02
          7      -39954.08   1.05e+03
          8      -38328.48   1.63e+03
          9      -37744.72   5.84e+02
         10      -37715.68   2.90e+01
         11      -37715.12   5.61e-01
         12      -37715.11   1.04e-02
         13      -37715.11   1.98e-04
Performing nullcheck...
  Deleting factor 2 decreases objective by 1.25e+04. Factor retained.
  Nullcheck complete. Objective: -37715.11
Fitting factor/loading 3 (stop when difference in obj. is < 1.00e-02):
  Iteration      Objective   Obj Diff
          1      -26563.99        Inf
          2      -26561.36   2.63e+00
          3      -26561.36   1.98e-03
Performing nullcheck...
  Deleting factor 3 decreases objective by 1.12e+04. Factor retained.
  Nullcheck complete. Objective: -26561.36
Fitting factor/loading 4 (stop when difference in obj. is < 1.00e-02):
  Iteration      Objective   Obj Diff
          1      -26624.61        Inf
          2      -26607.88   1.67e+01
          3      -26602.79   5.09e+00
          4      -26585.60   1.72e+01
          5      -26585.21   3.93e-01
          6      -26585.21   0.00e+00
Performing nullcheck...
  Deleting factor 4 increases objective by 2.38e+01. Factor zeroed out.
  Nullcheck complete. Objective: -26561.36
0.411 sec elapsed
tic();fit.dwt = wave_ebmf(y[,1:p]);toc()
[1] "Fitting dimension  1"
[1] "Iteration  1 : obj  -53709.449"
[1] "Iteration  2 : obj  -52827.44"
[1] "Iteration  3 : obj  -51099.92"
[1] "Iteration  4 : obj  -49587.504"
[1] "Iteration  5 : obj  -49332.826"
[1] "Iteration  6 : obj  -49325.191"
[1] "Iteration  7 : obj  -49325.056"
[1] "Iteration  8 : obj  -49325.053"
[1] "Performing nullcheck"
[1] "Deleting factor  1  decreases objective by  19426.972"
[1] "Fitting dimension  2"
[1] "Iteration  1 : obj  -40002.025"
[1] "Iteration  2 : obj  -40001.487"
[1] "Iteration  3 : obj  -40001.37"
[1] "Iteration  4 : obj  -40001.129"
[1] "Iteration  5 : obj  -39999.652"
[1] "Iteration  6 : obj  -39991.509"
[1] "Iteration  7 : obj  -39952.018"
[1] "Iteration  8 : obj  -39784.233"
[1] "Iteration  9 : obj  -39163.125"
[1] "Iteration  10 : obj  -37629.75"
[1] "Iteration  11 : obj  -36311.309"
[1] "Iteration  12 : obj  -36152.674"
[1] "Iteration  13 : obj  -36148.577"
[1] "Iteration  14 : obj  -36148.52"
[1] "Iteration  15 : obj  -36148.52"
[1] "Performing nullcheck"
[1] "Deleting factor  2  decreases objective by  13176.534"
[1] "Fitting dimension  3"
[1] "Iteration  1 : obj  -24283.569"
[1] "Iteration  2 : obj  -24281.024"
[1] "Iteration  3 : obj  -24281.023"
[1] "Performing nullcheck"
[1] "Deleting factor  3  decreases objective by  11867.497"
[1] "Fitting dimension  4"
[1] "Iteration  1 : obj  -24340.149"
[1] "Iteration  2 : obj  -24323.602"
[1] "Iteration  3 : obj  -24318.697"
[1] "Iteration  4 : obj  -24312.346"
[1] "Iteration  5 : obj  -24296.374"
[1] "loading zeroed out"
[1] "Performing nullcheck"
[1] "Deleting factor  4  increases objective by  1.587"
0.994 sec elapsed
ploter(fit.flash$ldf$f,main='flash')

ploter(fit.dwt$ldf$f,main='wave_flash')

Two functions

seed=12345
tic();fit.flash = flash(y,var_type = 'by_row',seed = seed);toc()
Fitting factor/loading 1 (stop when difference in obj. is < 1.00e-02):
  Iteration      Objective   Obj Diff
          1     -108732.64        Inf
          2     -107198.23   1.53e+03
          3     -104120.27   3.08e+03
          4     -101003.79   3.12e+03
          5     -100257.86   7.46e+02
          6     -100224.90   3.30e+01
          7     -100224.18   7.19e-01
          8     -100224.17   1.43e-02
          9     -100224.17   2.80e-04
Performing nullcheck...
  Deleting factor 1 decreases objective by 3.74e+04. Factor retained.
  Nullcheck complete. Objective: -100224.17
Fitting factor/loading 2 (stop when difference in obj. is < 1.00e-02):
  Iteration      Objective   Obj Diff
          1      -82205.78        Inf
          2      -82199.57   6.21e+00
          3      -82182.47   1.71e+01
          4      -82111.09   7.14e+01
          5      -81820.53   2.91e+02
          6      -80751.70   1.07e+03
          7      -77976.59   2.78e+03
          8      -75108.95   2.87e+03
          9      -74590.44   5.19e+02
         10      -74575.60   1.48e+01
         11      -74575.35   2.54e-01
         12      -74575.34   4.44e-03
Performing nullcheck...
  Deleting factor 2 decreases objective by 2.56e+04. Factor retained.
  Nullcheck complete. Objective: -74575.34
Fitting factor/loading 3 (stop when difference in obj. is < 1.00e-02):
  Iteration      Objective   Obj Diff
          1      -51738.85        Inf
          2      -51734.74   4.11e+00
          3      -51734.73   2.77e-03
Performing nullcheck...
  Deleting factor 3 decreases objective by 2.28e+04. Factor retained.
  Nullcheck complete. Objective: -51734.73
Fitting factor/loading 4 (stop when difference in obj. is < 1.00e-02):
  Iteration      Objective   Obj Diff
          1      -51815.30        Inf
          2      -51792.18   2.31e+01
          3      -51788.56   3.63e+00
          4      -51785.80   2.76e+00
          5      -51777.15   8.65e+00
          6      -51736.39   4.08e+01
          7      -51736.39   2.69e-04
Performing nullcheck...
  Deleting factor 4 increases objective by 1.66e+00. Factor zeroed out.
  Nullcheck complete. Objective: -51734.73
0.602 sec elapsed
tic();fit.dwt = wave_ebmf(y);toc()
[1] "Fitting dimension  1"
[1] "Iteration  1 : obj  -107292.443"
[1] "Iteration  2 : obj  -105642.273"
[1] "Iteration  3 : obj  -102305.493"
[1] "Iteration  4 : obj  -99150.002"
[1] "Iteration  5 : obj  -98554.208"
[1] "Iteration  6 : obj  -98535.653"
[1] "Iteration  7 : obj  -98535.338"
[1] "Iteration  8 : obj  -98535.333"
[1] "Performing nullcheck"
[1] "Deleting factor  1  decreases objective by  39091.254"
[1] "Fitting dimension  2"
[1] "Iteration  1 : obj  -79256.738"
[1] "Iteration  2 : obj  -79255.162"
[1] "Iteration  3 : obj  -79250.46"
[1] "Iteration  4 : obj  -79228.677"
[1] "Iteration  5 : obj  -79130.16"
[1] "Iteration  6 : obj  -78715.988"
[1] "Iteration  7 : obj  -77232.717"
[1] "Iteration  8 : obj  -73908.739"
[1] "Iteration  9 : obj  -71625.121"
[1] "Iteration  10 : obj  -71430.346"
[1] "Iteration  11 : obj  -71426.573"
[1] "Iteration  12 : obj  -71426.51"
[1] "Iteration  13 : obj  -71426.51"
[1] "Performing nullcheck"
[1] "Deleting factor  2  decreases objective by  27108.823"
[1] "Fitting dimension  3"
[1] "Iteration  1 : obj  -47174.395"
[1] "Iteration  2 : obj  -47170.479"
[1] "Iteration  3 : obj  -47170.478"
[1] "Performing nullcheck"
[1] "Deleting factor  3  decreases objective by  24256.032"
[1] "Fitting dimension  4"
[1] "Iteration  1 : obj  -47241.861"
[1] "Iteration  2 : obj  -47218.33"
[1] "Iteration  3 : obj  -47213.905"
[1] "Iteration  4 : obj  -47210.322"
[1] "Iteration  5 : obj  -47205.739"
[1] "Iteration  6 : obj  -47201.604"
[1] "Iteration  7 : obj  -47197.79"
[1] "Iteration  8 : obj  -47194.883"
[1] "Iteration  9 : obj  -47193.295"
[1] "Iteration  10 : obj  -47192.457"
[1] "Iteration  11 : obj  -47191.904"
[1] "Iteration  12 : obj  -47191.472"
[1] "Iteration  13 : obj  -47191.123"
[1] "Iteration  14 : obj  -47190.807"
[1] "Iteration  15 : obj  -47190.461"
[1] "Iteration  16 : obj  -47190.064"
[1] "Iteration  17 : obj  -47189.744"
[1] "Iteration  18 : obj  -47189.485"
[1] "Iteration  19 : obj  -47189.279"
[1] "Iteration  20 : obj  -47189.114"
[1] "Iteration  21 : obj  -47188.982"
[1] "Iteration  22 : obj  -47188.876"
[1] "Iteration  23 : obj  -47188.792"
[1] "Iteration  24 : obj  -47188.727"
[1] "Iteration  25 : obj  -47188.676"
[1] "Iteration  26 : obj  -47188.634"
[1] "Iteration  27 : obj  -47188.596"
[1] "Iteration  28 : obj  -47188.559"
[1] "Iteration  29 : obj  -47188.519"
[1] "Iteration  30 : obj  -47188.47"
[1] "Iteration  31 : obj  -47188.402"
[1] "Iteration  32 : obj  -47188.29"
[1] "Iteration  33 : obj  -47205.281"
[1] "An iteration decreased the objective"
[1] "Performing nullcheck"
[1] "Deleting factor  4  increases objective by  34.803"
3.053 sec elapsed
ploter2(fit.flash$ldf$f,main='flash')

ploter2(fit.dwt$ldf$f,main='wave_flash')

Poisson case

ploter3 = function(EF,main){
  p = nrow(EF)
  par(mfrow=c(3,1))
  for(k in 1:ncol(EF)){
    plot(EF[,k],ylab=paste('f',k,sep=''),main=ifelse(k==1,main,""),type='l')
    abline(v=p/2,lty=2)
  }
}

Start with a single function case:

library(stm)
set.seed(123)
n = 120
p = 256
K= 3
FF = matrix(1, nrow=p, ncol=K)
FF[(p/8*1):(p/8*2),1] = 5
FF[(p/8*3):(p/8*4),2] = 5
FF[(p/8*5):(p/8*7),3] = 5
L = matrix(rgamma(n*K,2),ncol=K)
y = matrix(rpois(n*p,tcrossprod(L,FF)),nrow=n)

fit.nmf = NNLM::nnmf(y,k=3,method = 'scd',loss='mkl')
ploter(t(fit.nmf$H),main='nmf,scd=mkl')

fit.gom = cluster.mix(y,smooth = FALSE,K=3,tol=1e-3,maxit = 100)
[1] "iteration"
[1] 1
[1] "phi difference"
[1] 3988.362
[1] "pi difference"
[1] 0.2680048
[1] "negative loglikelihood"
[1] 1556268
[1] "iteration"
[1] 2
[1] "phi difference"
[1] 0.007248152
[1] "pi difference"
[1] 0.01655635
[1] "negative loglikelihood"
[1] 1556132
[1] "iteration"
[1] 3
[1] "phi difference"
[1] 0.01425026
[1] "pi difference"
[1] 0.0169203
[1] "negative loglikelihood"
[1] 1555973
[1] "iteration"
[1] 4
[1] "phi difference"
[1] 0.02125566
[1] "pi difference"
[1] 0.01778377
[1] "negative loglikelihood"
[1] 1555773
[1] "iteration"
[1] 5
[1] "phi difference"
[1] 0.02832821
[1] "pi difference"
[1] 0.01903516
[1] "negative loglikelihood"
[1] 1555517
[1] "iteration"
[1] 6
[1] "phi difference"
[1] 0.03540202
[1] "pi difference"
[1] 0.0205576
[1] "negative loglikelihood"
[1] 1555191
[1] "iteration"
[1] 7
[1] "phi difference"
[1] 0.04222619
[1] "pi difference"
[1] 0.02222088
[1] "negative loglikelihood"
[1] 1554784
[1] "iteration"
[1] 8
[1] "phi difference"
[1] 0.04834576
[1] "pi difference"
[1] 0.02378133
[1] "negative loglikelihood"
[1] 1554296
[1] "iteration"
[1] 9
[1] "phi difference"
[1] 0.05218435
[1] "pi difference"
[1] 0.0249727
[1] "negative loglikelihood"
[1] 1553741
[1] "iteration"
[1] 10
[1] "phi difference"
[1] 0.05384307
[1] "pi difference"
[1] 0.02565832
[1] "negative loglikelihood"
[1] 1553150
[1] "iteration"
[1] 11
[1] "phi difference"
[1] 0.05318603
[1] "pi difference"
[1] 0.02564275
[1] "negative loglikelihood"
[1] 1552564
[1] "iteration"
[1] 12
[1] "phi difference"
[1] 0.04992299
[1] "pi difference"
[1] 0.02484726
[1] "negative loglikelihood"
[1] 1552023
[1] "iteration"
[1] 13
[1] "phi difference"
[1] 0.04313862
[1] "pi difference"
[1] 0.02360919
[1] "negative loglikelihood"
[1] 1551555
[1] "iteration"
[1] 14
[1] "phi difference"
[1] 0.0350059
[1] "pi difference"
[1] 0.02240167
[1] "negative loglikelihood"
[1] 1551167
[1] "iteration"
[1] 15
[1] "phi difference"
[1] 0.02670056
[1] "pi difference"
[1] 0.02130135
[1] "negative loglikelihood"
[1] 1550849
[1] "iteration"
[1] 16
[1] "phi difference"
[1] 0.01867192
[1] "pi difference"
[1] 0.02026996
[1] "negative loglikelihood"
[1] 1550581
[1] "iteration"
[1] 17
[1] "phi difference"
[1] 0.01195962
[1] "pi difference"
[1] 0.01964568
[1] "negative loglikelihood"
[1] 1550344
[1] "iteration"
[1] 18
[1] "phi difference"
[1] 0.007249337
[1] "pi difference"
[1] 0.01917317
[1] "negative loglikelihood"
[1] 1550121
[1] "iteration"
[1] 19
[1] "phi difference"
[1] 0.007401366
[1] "pi difference"
[1] 0.01882432
[1] "negative loglikelihood"
[1] 1549901
[1] "iteration"
[1] 20
[1] "phi difference"
[1] 0.007840253
[1] "pi difference"
[1] 0.01859933
[1] "negative loglikelihood"
[1] 1549681
[1] "iteration"
[1] 21
[1] "phi difference"
[1] 0.00795566
[1] "pi difference"
[1] 0.01837616
[1] "negative loglikelihood"
[1] 1549459
[1] "iteration"
[1] 22
[1] "phi difference"
[1] 0.008185762
[1] "pi difference"
[1] 0.01812838
[1] "negative loglikelihood"
[1] 1549239
[1] "iteration"
[1] 23
[1] "phi difference"
[1] 0.008556548
[1] "pi difference"
[1] 0.01773103
[1] "negative loglikelihood"
[1] 1549027
[1] "iteration"
[1] 24
[1] "phi difference"
[1] 0.008651467
[1] "pi difference"
[1] 0.01713919
[1] "negative loglikelihood"
[1] 1548829
[1] "iteration"
[1] 25
[1] "phi difference"
[1] 0.008499844
[1] "pi difference"
[1] 0.01630018
[1] "negative loglikelihood"
[1] 1548648
[1] "iteration"
[1] 26
[1] "phi difference"
[1] 0.008148614
[1] "pi difference"
[1] 0.01523472
[1] "negative loglikelihood"
[1] 1548490
[1] "iteration"
[1] 27
[1] "phi difference"
[1] 0.007721917
[1] "pi difference"
[1] 0.01397762
[1] "negative loglikelihood"
[1] 1548354
[1] "iteration"
[1] 28
[1] "phi difference"
[1] 0.007359908
[1] "pi difference"
[1] 0.01258646
[1] "negative loglikelihood"
[1] 1548242
[1] "iteration"
[1] 29
[1] "phi difference"
[1] 0.006932472
[1] "pi difference"
[1] 0.01134788
[1] "negative loglikelihood"
[1] 1548149
[1] "iteration"
[1] 30
[1] "phi difference"
[1] 0.006280522
[1] "pi difference"
[1] 0.01030838
[1] "negative loglikelihood"
[1] 1548075
[1] "iteration"
[1] 31
[1] "phi difference"
[1] 0.005759753
[1] "pi difference"
[1] 0.009294335
[1] "negative loglikelihood"
[1] 1548016
[1] "iteration"
[1] 32
[1] "phi difference"
[1] 0.005267121
[1] "pi difference"
[1] 0.008331438
[1] "negative loglikelihood"
[1] 1547969
[1] "iteration"
[1] 33
[1] "phi difference"
[1] 0.004801244
[1] "pi difference"
[1] 0.007503247
[1] "negative loglikelihood"
[1] 1547931
[1] "iteration"
[1] 34
[1] "phi difference"
[1] 0.004377284
[1] "pi difference"
[1] 0.006784135
[1] "negative loglikelihood"
[1] 1547901
[1] "iteration"
[1] 35
[1] "phi difference"
[1] 0.003960138
[1] "pi difference"
[1] 0.006223292
[1] "negative loglikelihood"
[1] 1547876
[1] "iteration"
[1] 36
[1] "phi difference"
[1] 0.003445544
[1] "pi difference"
[1] 0.005720539
[1] "negative loglikelihood"
[1] 1547856
[1] "iteration"
[1] 37
[1] "phi difference"
[1] 0.002969403
[1] "pi difference"
[1] 0.005232668
[1] "negative loglikelihood"
[1] 1547840
[1] "iteration"
[1] 38
[1] "phi difference"
[1] 0.002832508
[1] "pi difference"
[1] 0.004801012
[1] "negative loglikelihood"
[1] 1547826
[1] "iteration"
[1] 39
[1] "phi difference"
[1] 0.002628865
[1] "pi difference"
[1] 0.004421177
[1] "negative loglikelihood"
[1] 1547814
[1] "iteration"
[1] 40
[1] "phi difference"
[1] 0.002435371
[1] "pi difference"
[1] 0.004077915
[1] "negative loglikelihood"
[1] 1547804
[1] "iteration"
[1] 41
[1] "phi difference"
[1] 0.002313386
[1] "pi difference"
[1] 0.003779616
[1] "negative loglikelihood"
[1] 1547795
[1] "iteration"
[1] 42
[1] "phi difference"
[1] 0.002123023
[1] "pi difference"
[1] 0.003526026
[1] "negative loglikelihood"
[1] 1547788
[1] "iteration"
[1] 43
[1] "phi difference"
[1] 0.001916216
[1] "pi difference"
[1] 0.003308955
[1] "negative loglikelihood"
[1] 1547781
[1] "iteration"
[1] 44
[1] "phi difference"
[1] 0.0017656
[1] "pi difference"
[1] 0.003110528
[1] "negative loglikelihood"
[1] 1547775
[1] "iteration"
[1] 45
[1] "phi difference"
[1] 0.001684359
[1] "pi difference"
[1] 0.002933182
[1] "negative loglikelihood"
[1] 1547770
[1] "iteration"
[1] 46
[1] "phi difference"
[1] 0.001585574
[1] "pi difference"
[1] 0.002770518
[1] "negative loglikelihood"
[1] 1547765
[1] "iteration"
[1] 47
[1] "phi difference"
[1] 0.0014518
[1] "pi difference"
[1] 0.002626192
[1] "negative loglikelihood"
[1] 1547760
[1] "iteration"
[1] 48
[1] "phi difference"
[1] 0.001385454
[1] "pi difference"
[1] 0.002498727
[1] "negative loglikelihood"
[1] 1547756
[1] "iteration"
[1] 49
[1] "phi difference"
[1] 0.001276966
[1] "pi difference"
[1] 0.002382345
[1] "negative loglikelihood"
[1] 1547752
[1] "iteration"
[1] 50
[1] "phi difference"
[1] 0.001177705
[1] "pi difference"
[1] 0.002276098
[1] "negative loglikelihood"
[1] 1547749
[1] "iteration"
[1] 51
[1] "phi difference"
[1] 0.001132947
[1] "pi difference"
[1] 0.002181821
[1] "negative loglikelihood"
[1] 1547745
[1] "iteration"
[1] 52
[1] "phi difference"
[1] 0.001090066
[1] "pi difference"
[1] 0.002095521
[1] "negative loglikelihood"
[1] 1547742
[1] "iteration"
[1] 53
[1] "phi difference"
[1] 0.001043696
[1] "pi difference"
[1] 0.002016015
[1] "negative loglikelihood"
[1] 1547739
[1] "iteration"
[1] 54
[1] "phi difference"
[1] 0.0009827324
[1] "pi difference"
[1] 0.001944414
[1] "negative loglikelihood"
[1] 1547736
[1] "iteration"
[1] 55
[1] "phi difference"
[1] 0.0009289521
[1] "pi difference"
[1] 0.001877975
[1] "negative loglikelihood"
[1] 1547734
[1] "iteration"
[1] 56
[1] "phi difference"
[1] 0.000876512
[1] "pi difference"
[1] 0.001816076
[1] "negative loglikelihood"
[1] 1547731
[1] "iteration"
[1] 57
[1] "phi difference"
[1] 0.0008307285
[1] "pi difference"
[1] 0.001759041
[1] "negative loglikelihood"
[1] 1547729
[1] "iteration"
[1] 58
[1] "phi difference"
[1] 0.0008034163
[1] "pi difference"
[1] 0.001704776
[1] "negative loglikelihood"
[1] 1547727
[1] "iteration"
[1] 59
[1] "phi difference"
[1] 0.0007853062
[1] "pi difference"
[1] 0.001653211
[1] "negative loglikelihood"
[1] 1547724
[1] "iteration"
[1] 60
[1] "phi difference"
[1] 0.0007481631
[1] "pi difference"
[1] 0.001605318
[1] "negative loglikelihood"
[1] 1547722
[1] "iteration"
[1] 61
[1] "phi difference"
[1] 0.0007088679
[1] "pi difference"
[1] 0.001560169
[1] "negative loglikelihood"
[1] 1547720
[1] "iteration"
[1] 62
[1] "phi difference"
[1] 0.0006779852
[1] "pi difference"
[1] 0.001518061
[1] "negative loglikelihood"
[1] 1547718
[1] "iteration"
[1] 63
[1] "phi difference"
[1] 0.0006566976
[1] "pi difference"
[1] 0.001477979
[1] "negative loglikelihood"
[1] 1547717
[1] "iteration"
[1] 64
[1] "phi difference"
[1] 0.0006547238
[1] "pi difference"
[1] 0.00144133
[1] "negative loglikelihood"
[1] 1547715
[1] "iteration"
[1] 65
[1] "phi difference"
[1] 0.0006487581
[1] "pi difference"
[1] 0.001407952
[1] "negative loglikelihood"
[1] 1547713
[1] "iteration"
[1] 66
[1] "phi difference"
[1] 0.0006353632
[1] "pi difference"
[1] 0.001376833
[1] "negative loglikelihood"
[1] 1547711
[1] "iteration"
[1] 67
[1] "phi difference"
[1] 0.000622759
[1] "pi difference"
[1] 0.001347232
[1] "negative loglikelihood"
[1] 1547710
[1] "iteration"
[1] 68
[1] "phi difference"
[1] 0.0006067917
[1] "pi difference"
[1] 0.001318114
[1] "negative loglikelihood"
[1] 1547708
[1] "iteration"
[1] 69
[1] "phi difference"
[1] 0.0005888941
[1] "pi difference"
[1] 0.001289981
[1] "negative loglikelihood"
[1] 1547707
[1] "iteration"
[1] 70
[1] "phi difference"
[1] 0.0005713779
[1] "pi difference"
[1] 0.001263342
[1] "negative loglikelihood"
[1] 1547706
[1] "iteration"
[1] 71
[1] "phi difference"
[1] 0.0005535687
[1] "pi difference"
[1] 0.001238107
[1] "negative loglikelihood"
[1] 1547704
[1] "iteration"
[1] 72
[1] "phi difference"
[1] 0.000536831
[1] "pi difference"
[1] 0.001213726
[1] "negative loglikelihood"
[1] 1547703
[1] "iteration"
[1] 73
[1] "phi difference"
[1] 0.0005223291
[1] "pi difference"
[1] 0.001190546
[1] "negative loglikelihood"
[1] 1547702
[1] "iteration"
[1] 74
[1] "phi difference"
[1] 0.000519353
[1] "pi difference"
[1] 0.001167923
[1] "negative loglikelihood"
[1] 1547700
[1] "iteration"
[1] 75
[1] "phi difference"
[1] 0.0005168541
[1] "pi difference"
[1] 0.001146075
[1] "negative loglikelihood"
[1] 1547699
[1] "iteration"
[1] 76
[1] "phi difference"
[1] 0.0005095154
[1] "pi difference"
[1] 0.001124777
[1] "negative loglikelihood"
[1] 1547698
[1] "iteration"
[1] 77
[1] "phi difference"
[1] 0.0004964102
[1] "pi difference"
[1] 0.001103644
[1] "negative loglikelihood"
[1] 1547697
[1] "iteration"
[1] 78
[1] "phi difference"
[1] 0.000482352
[1] "pi difference"
[1] 0.001083192
[1] "negative loglikelihood"
[1] 1547696
[1] "iteration"
[1] 79
[1] "phi difference"
[1] 0.0004789292
[1] "pi difference"
[1] 0.001063269
[1] "negative loglikelihood"
[1] 1547695
[1] "iteration"
[1] 80
[1] "phi difference"
[1] 0.0004761465
[1] "pi difference"
[1] 0.001044251
[1] "negative loglikelihood"
[1] 1547694
[1] "iteration"
[1] 81
[1] "phi difference"
[1] 0.0004733357
[1] "pi difference"
[1] 0.00102601
[1] "negative loglikelihood"
[1] 1547693
[1] "iteration"
[1] 82
[1] "phi difference"
[1] 0.0004692198
[1] "pi difference"
[1] 0.001008253
[1] "negative loglikelihood"
[1] 1547692
[1] "iteration"
[1] 83
[1] "phi difference"
[1] 0.000462306
[1] "pi difference"
[1] 0.000991118
[1] "negative loglikelihood"
[1] 1547691
ploter(t(fit.gom$phi),main='gom')

fit.stm = stm(y,K=3,nugget = TRUE,tol=1e-4)
[1] "At iter 10, mean KL: 0.484295"
ploter(fit.stm$EF,main='stm, scd-mkl')

# change init
fit.stm2 = stm(y,K=3,nugget = TRUE,init='lee',tol=1e-4)
ploter(fit.stm2$EF,main='stm, lee-mkl')

fit.stm3 = stm(y,K=3,nugget = TRUE,init='lee',init_loss = 'mse',tol=1e-4)
[1] "At iter 10, mean KL: 0.492514"
[1] "At iter 20, mean KL: 0.490361"
ploter(fit.stm3$EF,main='stm, lee-mse')

fit.stm4 = stm(y,K=3,nugget = TRUE,init='scd',init_loss = 'mse',tol=1e-4)
[1] "At iter 10, mean KL: 0.484725"
ploter(fit.stm4$EF,main='stm, scd-mse')

kmeans.init = kmeans(y, K, nstart = 5)
L0 = rep(1, n) %o% (as.vector(table(kmeans.init$cluster)))
F0 = t(kmeans.init$centers)
fit.stm5 = stm(y,K=3,nugget = TRUE,init = list(L_init=L0,F_init=F0),tol=1e-5)
[1] "At iter 10, mean KL: 0.735056"
[1] "At iter 20, mean KL: 0.581710"
[1] "At iter 30, mean KL: 0.504752"
[1] "At iter 40, mean KL: 0.488120"
[1] "At iter 50, mean KL: 0.485984"
[1] "At iter 60, mean KL: 0.485408"
ploter(fit.stm5$EF,main='stm, kmeans init')

fit.sgom = cluster.mix(y,K=3,tol=1e-3,maxit = 100,nugget = T)
[1] "iteration"
[1] 1
[1] "phi difference"
[1] 3988.373
[1] "pi difference"
[1] 0.2680048
[1] "negative loglikelihood"
[1] 1556268
[1] "iteration"
[1] 2
[1] "phi difference"
[1] 0.03018013
[1] "pi difference"
[1] 0.01787299
[1] "negative loglikelihood"
[1] 1556108
[1] "iteration"
[1] 3
[1] "phi difference"
[1] 0.03583746
[1] "pi difference"
[1] 0.01968614
[1] "negative loglikelihood"
[1] 1555875
[1] "iteration"
[1] 4
[1] "phi difference"
[1] 0.02971307
[1] "pi difference"
[1] 0.02180536
[1] "negative loglikelihood"
[1] 1555557
[1] "iteration"
[1] 5
[1] "phi difference"
[1] 0.03334056
[1] "pi difference"
[1] 0.02444069
[1] "negative loglikelihood"
[1] 1555135
[1] "iteration"
[1] 6
[1] "phi difference"
[1] 0.03854816
[1] "pi difference"
[1] 0.02713383
[1] "negative loglikelihood"
[1] 1554601
[1] "iteration"
[1] 7
[1] "phi difference"
[1] 0.04032402
[1] "pi difference"
[1] 0.02944567
[1] "negative loglikelihood"
[1] 1553963
[1] "iteration"
[1] 8
[1] "phi difference"
[1] 0.04240823
[1] "pi difference"
[1] 0.03053127
[1] "negative loglikelihood"
[1] 1553280
[1] "iteration"
[1] 9
[1] "phi difference"
[1] 0.04106111
[1] "pi difference"
[1] 0.03040469
[1] "negative loglikelihood"
[1] 1552617
[1] "iteration"
[1] 10
[1] "phi difference"
[1] 0.03786641
[1] "pi difference"
[1] 0.02946195
[1] "negative loglikelihood"
[1] 1552011
[1] "iteration"
[1] 11
[1] "phi difference"
[1] 0.03373034
[1] "pi difference"
[1] 0.027606
[1] "negative loglikelihood"
[1] 1551506
[1] "iteration"
[1] 12
[1] "phi difference"
[1] 0.02879371
[1] "pi difference"
[1] 0.02595568
[1] "negative loglikelihood"
[1] 1551079
[1] "iteration"
[1] 13
[1] "phi difference"
[1] 0.02232435
[1] "pi difference"
[1] 0.02443482
[1] "negative loglikelihood"
[1] 1550736
[1] "iteration"
[1] 14
[1] "phi difference"
[1] 0.01729528
[1] "pi difference"
[1] 0.02363252
[1] "negative loglikelihood"
[1] 1550436
[1] "iteration"
[1] 15
[1] "phi difference"
[1] 0.01573788
[1] "pi difference"
[1] 0.02302273
[1] "negative loglikelihood"
[1] 1550163
[1] "iteration"
[1] 16
[1] "phi difference"
[1] 0.01650664
[1] "pi difference"
[1] 0.02281812
[1] "negative loglikelihood"
[1] 1549905
[1] "iteration"
[1] 17
[1] "phi difference"
[1] 0.01569569
[1] "pi difference"
[1] 0.02260439
[1] "negative loglikelihood"
[1] 1549643
[1] "iteration"
[1] 18
[1] "phi difference"
[1] 0.01534902
[1] "pi difference"
[1] 0.02197915
[1] "negative loglikelihood"
[1] 1549392
[1] "iteration"
[1] 19
[1] "phi difference"
[1] 0.01487146
[1] "pi difference"
[1] 0.02118918
[1] "negative loglikelihood"
[1] 1549160
[1] "iteration"
[1] 20
[1] "phi difference"
[1] 0.01428396
[1] "pi difference"
[1] 0.0204687
[1] "negative loglikelihood"
[1] 1548948
[1] "iteration"
[1] 21
[1] "phi difference"
[1] 0.01085422
[1] "pi difference"
[1] 0.01886644
[1] "negative loglikelihood"
[1] 1548767
[1] "iteration"
[1] 22
[1] "phi difference"
[1] 0.009870626
[1] "pi difference"
[1] 0.01711367
[1] "negative loglikelihood"
[1] 1548623
[1] "iteration"
[1] 23
[1] "phi difference"
[1] 0.008548105
[1] "pi difference"
[1] 0.01540902
[1] "negative loglikelihood"
[1] 1548509
[1] "iteration"
[1] 24
[1] "phi difference"
[1] 0.008144208
[1] "pi difference"
[1] 0.01378699
[1] "negative loglikelihood"
[1] 1548420
[1] "iteration"
[1] 25
[1] "phi difference"
[1] 0.007262927
[1] "pi difference"
[1] 0.01223353
[1] "negative loglikelihood"
[1] 1548343
[1] "iteration"
[1] 26
[1] "phi difference"
[1] 0.006539517
[1] "pi difference"
[1] 0.01092857
[1] "negative loglikelihood"
[1] 1548288
[1] "iteration"
[1] 27
[1] "phi difference"
[1] 0.005962441
[1] "pi difference"
[1] 0.00977714
[1] "negative loglikelihood"
[1] 1548244
[1] "iteration"
[1] 28
[1] "phi difference"
[1] 0.00546834
[1] "pi difference"
[1] 0.008816407
[1] "negative loglikelihood"
[1] 1548209
[1] "iteration"
[1] 29
[1] "phi difference"
[1] 0.004964084
[1] "pi difference"
[1] 0.007863353
[1] "negative loglikelihood"
[1] 1548182
[1] "iteration"
[1] 30
[1] "phi difference"
[1] 0.004912835
[1] "pi difference"
[1] 0.007065226
[1] "negative loglikelihood"
[1] 1548160
[1] "iteration"
[1] 31
[1] "phi difference"
[1] 0.00475776
[1] "pi difference"
[1] 0.006406188
[1] "negative loglikelihood"
[1] 1548142
[1] "iteration"
[1] 32
[1] "phi difference"
[1] 0.004144307
[1] "pi difference"
[1] 0.005916537
[1] "negative loglikelihood"
[1] 1548120
[1] "iteration"
[1] 33
[1] "phi difference"
[1] 0.004228823
[1] "pi difference"
[1] 0.005429475
[1] "negative loglikelihood"
[1] 1548106
[1] "iteration"
[1] 34
[1] "phi difference"
[1] 0.004027642
[1] "pi difference"
[1] 0.005029188
[1] "negative loglikelihood"
[1] 1548094
[1] "iteration"
[1] 35
[1] "phi difference"
[1] 0.003329406
[1] "pi difference"
[1] 0.004679578
[1] "negative loglikelihood"
[1] 1548085
[1] "iteration"
[1] 36
[1] "phi difference"
[1] 0.002929253
[1] "pi difference"
[1] 0.004416778
[1] "negative loglikelihood"
[1] 1548076
[1] "iteration"
[1] 37
[1] "phi difference"
[1] 0.002634863
[1] "pi difference"
[1] 0.004199795
[1] "negative loglikelihood"
[1] 1548069
[1] "iteration"
[1] 38
[1] "phi difference"
[1] 0.002469349
[1] "pi difference"
[1] 0.0040106
[1] "negative loglikelihood"
[1] 1548062
[1] "iteration"
[1] 39
[1] "phi difference"
[1] 0.002484036
[1] "pi difference"
[1] 0.003840474
[1] "negative loglikelihood"
[1] 1548056
[1] "iteration"
[1] 40
[1] "phi difference"
[1] 0.002469018
[1] "pi difference"
[1] 0.003695681
[1] "negative loglikelihood"
[1] 1548050
[1] "iteration"
[1] 41
[1] "phi difference"
[1] 0.002469172
[1] "pi difference"
[1] 0.003566242
[1] "negative loglikelihood"
[1] 1548045
[1] "iteration"
[1] 42
[1] "phi difference"
[1] 0.002426261
[1] "pi difference"
[1] 0.003560945
[1] "negative loglikelihood"
[1] 1548034
[1] "iteration"
[1] 43
[1] "phi difference"
[1] 0.002401062
[1] "pi difference"
[1] 0.003394727
[1] "negative loglikelihood"
[1] 1548028
[1] "iteration"
[1] 44
[1] "phi difference"
[1] 0.002384302
[1] "pi difference"
[1] 0.003271703
[1] "negative loglikelihood"
[1] 1548024
[1] "iteration"
[1] 45
[1] "phi difference"
[1] 0.002353458
[1] "pi difference"
[1] 0.003167008
[1] "negative loglikelihood"
[1] 1548020
[1] "iteration"
[1] 46
[1] "phi difference"
[1] 0.002322013
[1] "pi difference"
[1] 0.003074777
[1] "negative loglikelihood"
[1] 1548016
[1] "iteration"
[1] 47
[1] "phi difference"
[1] 0.002284785
[1] "pi difference"
[1] 0.002990795
[1] "negative loglikelihood"
[1] 1548012
[1] "iteration"
[1] 48
[1] "phi difference"
[1] 0.002249176
[1] "pi difference"
[1] 0.002914901
[1] "negative loglikelihood"
[1] 1548008
[1] "iteration"
[1] 49
[1] "phi difference"
[1] 0.002215859
[1] "pi difference"
[1] 0.002850266
[1] "negative loglikelihood"
[1] 1548005
[1] "iteration"
[1] 50
[1] "phi difference"
[1] 0.00218779
[1] "pi difference"
[1] 0.002790675
[1] "negative loglikelihood"
[1] 1548002
[1] "iteration"
[1] 51
[1] "phi difference"
[1] 0.002158367
[1] "pi difference"
[1] 0.002736233
[1] "negative loglikelihood"
[1] 1547998
[1] "iteration"
[1] 52
[1] "phi difference"
[1] 0.002138825
[1] "pi difference"
[1] 0.002685156
[1] "negative loglikelihood"
[1] 1547995
[1] "iteration"
[1] 53
[1] "phi difference"
[1] 0.002110526
[1] "pi difference"
[1] 0.002638842
[1] "negative loglikelihood"
[1] 1547992
[1] "iteration"
[1] 54
[1] "phi difference"
[1] 0.002084028
[1] "pi difference"
[1] 0.002594762
[1] "negative loglikelihood"
[1] 1547989
[1] "iteration"
[1] 55
[1] "phi difference"
[1] 0.002059332
[1] "pi difference"
[1] 0.002552755
[1] "negative loglikelihood"
[1] 1547986
[1] "iteration"
[1] 56
[1] "phi difference"
[1] 0.002035167
[1] "pi difference"
[1] 0.002512751
[1] "negative loglikelihood"
[1] 1547984
[1] "iteration"
[1] 57
[1] "phi difference"
[1] 0.002012832
[1] "pi difference"
[1] 0.002476791
[1] "negative loglikelihood"
[1] 1547981
[1] "iteration"
[1] 58
[1] "phi difference"
[1] 0.001992535
[1] "pi difference"
[1] 0.002446409
[1] "negative loglikelihood"
[1] 1547978
[1] "iteration"
[1] 59
[1] "phi difference"
[1] 0.001974504
[1] "pi difference"
[1] 0.002419446
[1] "negative loglikelihood"
[1] 1547976
[1] "iteration"
[1] 60
[1] "phi difference"
[1] 0.001958425
[1] "pi difference"
[1] 0.002393076
[1] "negative loglikelihood"
[1] 1547973
[1] "iteration"
[1] 61
[1] "phi difference"
[1] 0.001989723
[1] "pi difference"
[1] 0.002276884
[1] "negative loglikelihood"
[1] 1547970
[1] "iteration"
[1] 62
[1] "phi difference"
[1] 0.001950623
[1] "pi difference"
[1] 0.002282698
[1] "negative loglikelihood"
[1] 1547968
[1] "iteration"
[1] 63
[1] "phi difference"
[1] 0.001923932
[1] "pi difference"
[1] 0.002268076
[1] "negative loglikelihood"
[1] 1547965
[1] "iteration"
[1] 64
[1] "phi difference"
[1] 0.001903519
[1] "pi difference"
[1] 0.002249296
[1] "negative loglikelihood"
[1] 1547963
[1] "iteration"
[1] 65
[1] "phi difference"
[1] 0.001904114
[1] "pi difference"
[1] 0.002228726
[1] "negative loglikelihood"
[1] 1547961
[1] "iteration"
[1] 66
[1] "phi difference"
[1] 0.001919569
[1] "pi difference"
[1] 0.002207453
[1] "negative loglikelihood"
[1] 1547959
[1] "iteration"
[1] 67
[1] "phi difference"
[1] 0.001924466
[1] "pi difference"
[1] 0.002185836
[1] "negative loglikelihood"
[1] 1547957
[1] "iteration"
[1] 68
[1] "phi difference"
[1] 0.001923349
[1] "pi difference"
[1] 0.002164205
[1] "negative loglikelihood"
[1] 1547955
[1] "iteration"
[1] 69
[1] "phi difference"
[1] 0.001917652
[1] "pi difference"
[1] 0.002142552
[1] "negative loglikelihood"
[1] 1547953
[1] "iteration"
[1] 70
[1] "phi difference"
[1] 0.00190977
[1] "pi difference"
[1] 0.002121029
[1] "negative loglikelihood"
[1] 1547951
[1] "iteration"
[1] 71
[1] "phi difference"
[1] 0.001896586
[1] "pi difference"
[1] 0.00209947
[1] "negative loglikelihood"
[1] 1547949
[1] "iteration"
[1] 72
[1] "phi difference"
[1] 0.00188439
[1] "pi difference"
[1] 0.00207807
[1] "negative loglikelihood"
[1] 1547947
[1] "iteration"
[1] 73
[1] "phi difference"
[1] 0.00186686
[1] "pi difference"
[1] 0.002057027
[1] "negative loglikelihood"
[1] 1547945
[1] "iteration"
[1] 74
[1] "phi difference"
[1] 0.001794007
[1] "pi difference"
[1] 0.001961822
[1] "negative loglikelihood"
[1] 1547943
[1] "iteration"
[1] 75
[1] "phi difference"
[1] 0.001738328
[1] "pi difference"
[1] 0.001960224
[1] "negative loglikelihood"
[1] 1547941
[1] "iteration"
[1] 76
[1] "phi difference"
[1] 0.00175927
[1] "pi difference"
[1] 0.001950683
[1] "negative loglikelihood"
[1] 1547940
[1] "iteration"
[1] 77
[1] "phi difference"
[1] 0.001760102
[1] "pi difference"
[1] 0.001935696
[1] "negative loglikelihood"
[1] 1547938
[1] "iteration"
[1] 78
[1] "phi difference"
[1] 0.001752297
[1] "pi difference"
[1] 0.00191842
[1] "negative loglikelihood"
[1] 1547936
[1] "iteration"
[1] 79
[1] "phi difference"
[1] 0.001739365
[1] "pi difference"
[1] 0.001900192
[1] "negative loglikelihood"
[1] 1547935
[1] "iteration"
[1] 80
[1] "phi difference"
[1] 0.001724546
[1] "pi difference"
[1] 0.001881809
[1] "negative loglikelihood"
[1] 1547933
[1] "iteration"
[1] 81
[1] "phi difference"
[1] 0.001735514
[1] "pi difference"
[1] 0.001863538
[1] "negative loglikelihood"
[1] 1547932
[1] "iteration"
[1] 82
[1] "phi difference"
[1] 0.001730098
[1] "pi difference"
[1] 0.001791939
[1] "negative loglikelihood"
[1] 1547929
[1] "iteration"
[1] 83
[1] "phi difference"
[1] 0.001727495
[1] "pi difference"
[1] 0.001770703
[1] "negative loglikelihood"
[1] 1547927
[1] "iteration"
[1] 84
[1] "phi difference"
[1] 0.001700501
[1] "pi difference"
[1] 0.001759386
[1] "negative loglikelihood"
[1] 1547926
[1] "iteration"
[1] 85
[1] "phi difference"
[1] 0.00167627
[1] "pi difference"
[1] 0.001749164
[1] "negative loglikelihood"
[1] 1547924
[1] "iteration"
[1] 86
[1] "phi difference"
[1] 0.001665829
[1] "pi difference"
[1] 0.001737654
[1] "negative loglikelihood"
[1] 1547923
[1] "iteration"
[1] 87
[1] "phi difference"
[1] 0.001672726
[1] "pi difference"
[1] 0.001688342
[1] "negative loglikelihood"
[1] 1547921
[1] "iteration"
[1] 88
[1] "phi difference"
[1] 0.001635966
[1] "pi difference"
[1] 0.001678322
[1] "negative loglikelihood"
[1] 1547919
[1] "iteration"
[1] 89
[1] "phi difference"
[1] 0.001498349
[1] "pi difference"
[1] 0.001596598
[1] "negative loglikelihood"
[1] 1547918
[1] "iteration"
[1] 90
[1] "phi difference"
[1] 0.001559974
[1] "pi difference"
[1] 0.001607123
[1] "negative loglikelihood"
[1] 1547917
[1] "iteration"
[1] 91
[1] "phi difference"
[1] 0.001558612
[1] "pi difference"
[1] 0.001608436
[1] "negative loglikelihood"
[1] 1547916
[1] "iteration"
[1] 92
[1] "phi difference"
[1] 0.001537687
[1] "pi difference"
[1] 0.001602466
[1] "negative loglikelihood"
[1] 1547914
[1] "iteration"
[1] 93
[1] "phi difference"
[1] 0.001515887
[1] "pi difference"
[1] 0.001592543
[1] "negative loglikelihood"
[1] 1547913
[1] "iteration"
[1] 94
[1] "phi difference"
[1] 0.001494541
[1] "pi difference"
[1] 0.001580507
[1] "negative loglikelihood"
[1] 1547912
[1] "iteration"
[1] 95
[1] "phi difference"
[1] 0.001473435
[1] "pi difference"
[1] 0.001567111
[1] "negative loglikelihood"
[1] 1547911
[1] "iteration"
[1] 96
[1] "phi difference"
[1] 0.001450557
[1] "pi difference"
[1] 0.001553231
[1] "negative loglikelihood"
[1] 1547910
[1] "iteration"
[1] 97
[1] "phi difference"
[1] 0.001431835
[1] "pi difference"
[1] 0.001539699
[1] "negative loglikelihood"
[1] 1547909
[1] "iteration"
[1] 98
[1] "phi difference"
[1] 0.001423584
[1] "pi difference"
[1] 0.001525928
[1] "negative loglikelihood"
[1] 1547908
[1] "iteration"
[1] 99
[1] "phi difference"
[1] 0.001398835
[1] "pi difference"
[1] 0.001492106
[1] "negative loglikelihood"
[1] 1547907
[1] "iteration"
[1] 100
[1] "phi difference"
[1] 0.001392031
[1] "pi difference"
[1] 0.001471048
[1] "negative loglikelihood"
[1] 1547906
ploter(t(fit.sgom$phi),main='sgom, kmeans init')

Now test two functions:

set.seed(123)
FFF = rbind(FF,FF)
y = matrix(rpois(n*p*2,tcrossprod(L,FFF)),nrow=n)

fit.stm = stm(y,K=3,nugget = TRUE,tol=1e-4,init='scd',init_loss = 'mkl')
[1] "At iter 10, mean KL: 0.486996"
[1] "At iter 20, mean KL: 0.486484"
[1] "At iter 30, mean KL: 0.486346"
[1] "At iter 40, mean KL: 0.486644"
[1] "At iter 50, mean KL: 0.486525"
[1] "At iter 60, mean KL: 0.489061"
ploter2(fit.stm$EF,main='stm, scd-mkl')

# change init
fit.stm2 = stm(y,K=3,nugget = TRUE,init='lee',init_loss = 'mkl',tol=1e-4)
[1] "At iter 10, mean KL: 0.536938"
ploter2(fit.stm2$EF,main='stm, lee-mkl')

fit.stm3 = stm(y,K=3,nugget = TRUE,init='lee',init_loss = 'mse',tol=1e-4)
ploter2(fit.stm3$EF,main='stm, lee-mse')

fit.stm4 = stm(y,K=3,nugget = TRUE,init='scd',init_loss = 'mse',tol=1e-4)
[1] "At iter 10, mean KL: 0.488115"
ploter2(fit.stm4$EF,main='stm, scd-mse')

kmeans.init = kmeans(y, K, nstart = 20)
L0 = rep(1, n) %o% (as.vector(table(kmeans.init$cluster)))
F0 = t(kmeans.init$centers)
fit.stm5 = stm(y,K=3,nugget = TRUE,init = list(L_init=L0,F_init=F0),tol=1e-5)
[1] "At iter 10, mean KL: 0.734644"
[1] "At iter 20, mean KL: 0.534781"
[1] "At iter 30, mean KL: 0.488247"
[1] "At iter 40, mean KL: 0.487026"
[1] "At iter 50, mean KL: 0.486390"
[1] "At iter 60, mean KL: 0.486425"
[1] "At iter 70, mean KL: 0.486102"
ploter2(fit.stm5$EF,main='stm, kmeans init')

fit.sgom = cluster.mix(y,K=3,tol=1e-3,maxit = 100,nugget = T)
[1] "iteration"
[1] 1
[1] "phi difference"
[1] 7892.405
[1] "pi difference"
[1] 0.2677622
[1] "negative loglikelihood"
[1] 3512295
[1] "iteration"
[1] 2
[1] "phi difference"
[1] 0.0379689
[1] "pi difference"
[1] 0.01846479
[1] "negative loglikelihood"
[1] 3511941
[1] "iteration"
[1] 3
[1] "phi difference"
[1] 0.0436682
[1] "pi difference"
[1] 0.02077947
[1] "negative loglikelihood"
[1] 3511407
[1] "iteration"
[1] 4
[1] "phi difference"
[1] 0.03650998
[1] "pi difference"
[1] 0.02381655
[1] "negative loglikelihood"
[1] 3510633
[1] "iteration"
[1] 5
[1] "phi difference"
[1] 0.03693277
[1] "pi difference"
[1] 0.02749967
[1] "negative loglikelihood"
[1] 3509585
[1] "iteration"
[1] 6
[1] "phi difference"
[1] 0.04406093
[1] "pi difference"
[1] 0.0311506
[1] "negative loglikelihood"
[1] 3508250
[1] "iteration"
[1] 7
[1] "phi difference"
[1] 0.04722812
[1] "pi difference"
[1] 0.03362491
[1] "negative loglikelihood"
[1] 3506706
[1] "iteration"
[1] 8
[1] "phi difference"
[1] 0.04678179
[1] "pi difference"
[1] 0.03461517
[1] "negative loglikelihood"
[1] 3505118
[1] "iteration"
[1] 9
[1] "phi difference"
[1] 0.0418353
[1] "pi difference"
[1] 0.03345156
[1] "negative loglikelihood"
[1] 3503694
[1] "iteration"
[1] 10
[1] "phi difference"
[1] 0.0348958
[1] "pi difference"
[1] 0.03177639
[1] "negative loglikelihood"
[1] 3502450
[1] "iteration"
[1] 11
[1] "phi difference"
[1] 0.0295633
[1] "pi difference"
[1] 0.0301965
[1] "negative loglikelihood"
[1] 3501407
[1] "iteration"
[1] 12
[1] "phi difference"
[1] 0.02444245
[1] "pi difference"
[1] 0.02907749
[1] "negative loglikelihood"
[1] 3500499
[1] "iteration"
[1] 13
[1] "phi difference"
[1] 0.02018698
[1] "pi difference"
[1] 0.0283852
[1] "negative loglikelihood"
[1] 3499704
[1] "iteration"
[1] 14
[1] "phi difference"
[1] 0.01704474
[1] "pi difference"
[1] 0.02711148
[1] "negative loglikelihood"
[1] 3499009
[1] "iteration"
[1] 15
[1] "phi difference"
[1] 0.01424221
[1] "pi difference"
[1] 0.02549777
[1] "negative loglikelihood"
[1] 3498402
[1] "iteration"
[1] 16
[1] "phi difference"
[1] 0.01838894
[1] "pi difference"
[1] 0.02367177
[1] "negative loglikelihood"
[1] 3497899
[1] "iteration"
[1] 17
[1] "phi difference"
[1] 0.02125098
[1] "pi difference"
[1] 0.02171565
[1] "negative loglikelihood"
[1] 3497491
[1] "iteration"
[1] 18
[1] "phi difference"
[1] 0.0219587
[1] "pi difference"
[1] 0.01983774
[1] "negative loglikelihood"
[1] 3497184
[1] "iteration"
[1] 19
[1] "phi difference"
[1] 0.01887537
[1] "pi difference"
[1] 0.01807375
[1] "negative loglikelihood"
[1] 3496939
[1] "iteration"
[1] 20
[1] "phi difference"
[1] 0.01265783
[1] "pi difference"
[1] 0.01620618
[1] "negative loglikelihood"
[1] 3496739
[1] "iteration"
[1] 21
[1] "phi difference"
[1] 0.01006968
[1] "pi difference"
[1] 0.01412676
[1] "negative loglikelihood"
[1] 3496593
[1] "iteration"
[1] 22
[1] "phi difference"
[1] 0.008018608
[1] "pi difference"
[1] 0.01257881
[1] "negative loglikelihood"
[1] 3496468
[1] "iteration"
[1] 23
[1] "phi difference"
[1] 0.006502438
[1] "pi difference"
[1] 0.01095633
[1] "negative loglikelihood"
[1] 3496377
[1] "iteration"
[1] 24
[1] "phi difference"
[1] 0.005221367
[1] "pi difference"
[1] 0.009596843
[1] "negative loglikelihood"
[1] 3496307
[1] "iteration"
[1] 25
[1] "phi difference"
[1] 0.004219676
[1] "pi difference"
[1] 0.008533203
[1] "negative loglikelihood"
[1] 3496249
[1] "iteration"
[1] 26
[1] "phi difference"
[1] 0.003955105
[1] "pi difference"
[1] 0.00755653
[1] "negative loglikelihood"
[1] 3496203
[1] "iteration"
[1] 27
[1] "phi difference"
[1] 0.002993657
[1] "pi difference"
[1] 0.0067356
[1] "negative loglikelihood"
[1] 3496165
[1] "iteration"
[1] 28
[1] "phi difference"
[1] 0.00267973
[1] "pi difference"
[1] 0.005984802
[1] "negative loglikelihood"
[1] 3496127
[1] "iteration"
[1] 29
[1] "phi difference"
[1] 0.00212502
[1] "pi difference"
[1] 0.005393021
[1] "negative loglikelihood"
[1] 3496097
[1] "iteration"
[1] 30
[1] "phi difference"
[1] 0.002279228
[1] "pi difference"
[1] 0.004940119
[1] "negative loglikelihood"
[1] 3496074
[1] "iteration"
[1] 31
[1] "phi difference"
[1] 0.002407007
[1] "pi difference"
[1] 0.004583082
[1] "negative loglikelihood"
[1] 3496055
[1] "iteration"
[1] 32
[1] "phi difference"
[1] 0.002479638
[1] "pi difference"
[1] 0.004311338
[1] "negative loglikelihood"
[1] 3496038
[1] "iteration"
[1] 33
[1] "phi difference"
[1] 0.002545767
[1] "pi difference"
[1] 0.004099626
[1] "negative loglikelihood"
[1] 3496023
[1] "iteration"
[1] 34
[1] "phi difference"
[1] 0.002551584
[1] "pi difference"
[1] 0.003904647
[1] "negative loglikelihood"
[1] 3496010
[1] "iteration"
[1] 35
[1] "phi difference"
[1] 0.002546811
[1] "pi difference"
[1] 0.003741738
[1] "negative loglikelihood"
[1] 3495997
[1] "iteration"
[1] 36
[1] "phi difference"
[1] 0.002536208
[1] "pi difference"
[1] 0.003587549
[1] "negative loglikelihood"
[1] 3495985
[1] "iteration"
[1] 37
[1] "phi difference"
[1] 0.002538028
[1] "pi difference"
[1] 0.003447868
[1] "negative loglikelihood"
[1] 3495975
[1] "iteration"
[1] 38
[1] "phi difference"
[1] 0.002511125
[1] "pi difference"
[1] 0.00332751
[1] "negative loglikelihood"
[1] 3495964
[1] "iteration"
[1] 39
[1] "phi difference"
[1] 0.002485373
[1] "pi difference"
[1] 0.003217536
[1] "negative loglikelihood"
[1] 3495955
[1] "iteration"
[1] 40
[1] "phi difference"
[1] 0.002447365
[1] "pi difference"
[1] 0.003120623
[1] "negative loglikelihood"
[1] 3495946
[1] "iteration"
[1] 41
[1] "phi difference"
[1] 0.002414424
[1] "pi difference"
[1] 0.003035548
[1] "negative loglikelihood"
[1] 3495937
[1] "iteration"
[1] 42
[1] "phi difference"
[1] 0.002390708
[1] "pi difference"
[1] 0.002961346
[1] "negative loglikelihood"
[1] 3495929
[1] "iteration"
[1] 43
[1] "phi difference"
[1] 0.002382012
[1] "pi difference"
[1] 0.002892438
[1] "negative loglikelihood"
[1] 3495921
[1] "iteration"
[1] 44
[1] "phi difference"
[1] 0.002331953
[1] "pi difference"
[1] 0.002837581
[1] "negative loglikelihood"
[1] 3495913
[1] "iteration"
[1] 45
[1] "phi difference"
[1] 0.002315162
[1] "pi difference"
[1] 0.002792455
[1] "negative loglikelihood"
[1] 3495905
[1] "iteration"
[1] 46
[1] "phi difference"
[1] 0.002298546
[1] "pi difference"
[1] 0.002754093
[1] "negative loglikelihood"
[1] 3495898
[1] "iteration"
[1] 47
[1] "phi difference"
[1] 0.002281809
[1] "pi difference"
[1] 0.002718074
[1] "negative loglikelihood"
[1] 3495891
[1] "iteration"
[1] 48
[1] "phi difference"
[1] 0.002249297
[1] "pi difference"
[1] 0.00268596
[1] "negative loglikelihood"
[1] 3495884
[1] "iteration"
[1] 49
[1] "phi difference"
[1] 0.002257303
[1] "pi difference"
[1] 0.002654853
[1] "negative loglikelihood"
[1] 3495877
[1] "iteration"
[1] 50
[1] "phi difference"
[1] 0.002254351
[1] "pi difference"
[1] 0.002629907
[1] "negative loglikelihood"
[1] 3495871
[1] "iteration"
[1] 51
[1] "phi difference"
[1] 0.002243879
[1] "pi difference"
[1] 0.002608092
[1] "negative loglikelihood"
[1] 3495865
[1] "iteration"
[1] 52
[1] "phi difference"
[1] 0.002215963
[1] "pi difference"
[1] 0.002541874
[1] "negative loglikelihood"
[1] 3495857
[1] "iteration"
[1] 53
[1] "phi difference"
[1] 0.002200637
[1] "pi difference"
[1] 0.002543268
[1] "negative loglikelihood"
[1] 3495851
[1] "iteration"
[1] 54
[1] "phi difference"
[1] 0.002187092
[1] "pi difference"
[1] 0.002538508
[1] "negative loglikelihood"
[1] 3495845
[1] "iteration"
[1] 55
[1] "phi difference"
[1] 0.002189963
[1] "pi difference"
[1] 0.002490186
[1] "negative loglikelihood"
[1] 3495839
[1] "iteration"
[1] 56
[1] "phi difference"
[1] 0.002156809
[1] "pi difference"
[1] 0.002473204
[1] "negative loglikelihood"
[1] 3495833
[1] "iteration"
[1] 57
[1] "phi difference"
[1] 0.002127963
[1] "pi difference"
[1] 0.002444326
[1] "negative loglikelihood"
[1] 3495828
[1] "iteration"
[1] 58
[1] "phi difference"
[1] 0.002095303
[1] "pi difference"
[1] 0.002405296
[1] "negative loglikelihood"
[1] 3495822
[1] "iteration"
[1] 59
[1] "phi difference"
[1] 0.00209071
[1] "pi difference"
[1] 0.002397739
[1] "negative loglikelihood"
[1] 3495816
[1] "iteration"
[1] 60
[1] "phi difference"
[1] 0.002062004
[1] "pi difference"
[1] 0.002384365
[1] "negative loglikelihood"
[1] 3495811
[1] "iteration"
[1] 61
[1] "phi difference"
[1] 0.002071835
[1] "pi difference"
[1] 0.002363512
[1] "negative loglikelihood"
[1] 3495806
[1] "iteration"
[1] 62
[1] "phi difference"
[1] 0.002041922
[1] "pi difference"
[1] 0.002328577
[1] "negative loglikelihood"
[1] 3495802
[1] "iteration"
[1] 63
[1] "phi difference"
[1] 0.002021581
[1] "pi difference"
[1] 0.002317958
[1] "negative loglikelihood"
[1] 3495797
[1] "iteration"
[1] 64
[1] "phi difference"
[1] 0.00196265
[1] "pi difference"
[1] 0.002295939
[1] "negative loglikelihood"
[1] 3495793
[1] "iteration"
[1] 65
[1] "phi difference"
[1] 0.001984323
[1] "pi difference"
[1] 0.002280442
[1] "negative loglikelihood"
[1] 3495788
[1] "iteration"
[1] 66
[1] "phi difference"
[1] 0.001930945
[1] "pi difference"
[1] 0.002236811
[1] "negative loglikelihood"
[1] 3495782
[1] "iteration"
[1] 67
[1] "phi difference"
[1] 0.001934175
[1] "pi difference"
[1] 0.002222583
[1] "negative loglikelihood"
[1] 3495778
[1] "iteration"
[1] 68
[1] "phi difference"
[1] 0.001921063
[1] "pi difference"
[1] 0.002208974
[1] "negative loglikelihood"
[1] 3495773
[1] "iteration"
[1] 69
[1] "phi difference"
[1] 0.001925458
[1] "pi difference"
[1] 0.002192477
[1] "negative loglikelihood"
[1] 3495769
[1] "iteration"
[1] 70
[1] "phi difference"
[1] 0.001945061
[1] "pi difference"
[1] 0.00213395
[1] "negative loglikelihood"
[1] 3495765
[1] "iteration"
[1] 71
[1] "phi difference"
[1] 0.00186265
[1] "pi difference"
[1] 0.002064106
[1] "negative loglikelihood"
[1] 3495761
[1] "iteration"
[1] 72
[1] "phi difference"
[1] 0.001815166
[1] "pi difference"
[1] 0.002081738
[1] "negative loglikelihood"
[1] 3495757
[1] "iteration"
[1] 73
[1] "phi difference"
[1] 0.00181396
[1] "pi difference"
[1] 0.002074656
[1] "negative loglikelihood"
[1] 3495753
[1] "iteration"
[1] 74
[1] "phi difference"
[1] 0.001813777
[1] "pi difference"
[1] 0.002060524
[1] "negative loglikelihood"
[1] 3495749
[1] "iteration"
[1] 75
[1] "phi difference"
[1] 0.001880053
[1] "pi difference"
[1] 0.00195965
[1] "negative loglikelihood"
[1] 3495747
[1] "iteration"
[1] 76
[1] "phi difference"
[1] 0.001822667
[1] "pi difference"
[1] 0.001979323
[1] "negative loglikelihood"
[1] 3495744
[1] "iteration"
[1] 77
[1] "phi difference"
[1] 0.001727907
[1] "pi difference"
[1] 0.001942758
[1] "negative loglikelihood"
[1] 3495740
[1] "iteration"
[1] 78
[1] "phi difference"
[1] 0.001689524
[1] "pi difference"
[1] 0.001931267
[1] "negative loglikelihood"
[1] 3495736
[1] "iteration"
[1] 79
[1] "phi difference"
[1] 0.001689444
[1] "pi difference"
[1] 0.001927212
[1] "negative loglikelihood"
[1] 3495732
[1] "iteration"
[1] 80
[1] "phi difference"
[1] 0.001679536
[1] "pi difference"
[1] 0.001717146
[1] "negative loglikelihood"
[1] 3495722
[1] "iteration"
[1] 81
[1] "phi difference"
[1] 0.001661715
[1] "pi difference"
[1] 0.001826611
[1] "negative loglikelihood"
[1] 3495718
[1] "iteration"
[1] 82
[1] "phi difference"
[1] 0.00168135
[1] "pi difference"
[1] 0.001817015
[1] "negative loglikelihood"
[1] 3495715
[1] "iteration"
[1] 83
[1] "phi difference"
[1] 0.001658501
[1] "pi difference"
[1] 0.001814753
[1] "negative loglikelihood"
[1] 3495712
[1] "iteration"
[1] 84
[1] "phi difference"
[1] 0.001633717
[1] "pi difference"
[1] 0.00179768
[1] "negative loglikelihood"
[1] 3495709
[1] "iteration"
[1] 85
[1] "phi difference"
[1] 0.001574049
[1] "pi difference"
[1] 0.001626841
[1] "negative loglikelihood"
[1] 3495699
[1] "iteration"
[1] 86
[1] "phi difference"
[1] 0.001610495
[1] "pi difference"
[1] 0.001707527
[1] "negative loglikelihood"
[1] 3495696
[1] "iteration"
[1] 87
[1] "phi difference"
[1] 0.001547156
[1] "pi difference"
[1] 0.001686927
[1] "negative loglikelihood"
[1] 3495693
[1] "iteration"
[1] 88
[1] "phi difference"
[1] 0.001537362
[1] "pi difference"
[1] 0.001700788
[1] "negative loglikelihood"
[1] 3495690
[1] "iteration"
[1] 89
[1] "phi difference"
[1] 0.001507697
[1] "pi difference"
[1] 0.001698673
[1] "negative loglikelihood"
[1] 3495687
[1] "iteration"
[1] 90
[1] "phi difference"
[1] 0.001480216
[1] "pi difference"
[1] 0.001689763
[1] "negative loglikelihood"
[1] 3495685
[1] "iteration"
[1] 91
[1] "phi difference"
[1] 0.001453214
[1] "pi difference"
[1] 0.001678377
[1] "negative loglikelihood"
[1] 3495682
[1] "iteration"
[1] 92
[1] "phi difference"
[1] 0.001412847
[1] "pi difference"
[1] 0.001665663
[1] "negative loglikelihood"
[1] 3495680
[1] "iteration"
[1] 93
[1] "phi difference"
[1] 0.001410081
[1] "pi difference"
[1] 0.001647452
[1] "negative loglikelihood"
[1] 3495678
[1] "iteration"
[1] 94
[1] "phi difference"
[1] 0.001427167
[1] "pi difference"
[1] 0.001612153
[1] "negative loglikelihood"
[1] 3495674
[1] "iteration"
[1] 95
[1] "phi difference"
[1] 0.001433414
[1] "pi difference"
[1] 0.001581008
[1] "negative loglikelihood"
[1] 3495672
[1] "iteration"
[1] 96
[1] "phi difference"
[1] 0.001406101
[1] "pi difference"
[1] 0.001578095
[1] "negative loglikelihood"
[1] 3495670
[1] "iteration"
[1] 97
[1] "phi difference"
[1] 0.00143738
[1] "pi difference"
[1] 0.001524344
[1] "negative loglikelihood"
[1] 3495668
[1] "iteration"
[1] 98
[1] "phi difference"
[1] 0.001391724
[1] "pi difference"
[1] 0.001534715
[1] "negative loglikelihood"
[1] 3495666
[1] "iteration"
[1] 99
[1] "phi difference"
[1] 0.001370973
[1] "pi difference"
[1] 0.001530443
[1] "negative loglikelihood"
[1] 3495664
[1] "iteration"
[1] 100
[1] "phi difference"
[1] 0.001375036
[1] "pi difference"
[1] 0.001477857
[1] "negative loglikelihood"
[1] 3495662
ploter2(t(fit.sgom$phi),main='sgom, kmeans init')


sessionInfo()
R version 4.0.3 (2020-10-10)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS High Sierra 10.13.6

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRblas.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] stm_1.0.0        tictoc_1.0.1     flashr_0.6-7     wavethresh_4.6.8
[5] MASS_7.3-53      testthat_3.0.0   devtools_2.3.2   usethis_1.6.3   
[9] workflowr_1.6.2 

loaded via a namespace (and not attached):
 [1] genlasso_1.5       pkgload_1.1.0      splines_4.0.3      assertthat_0.2.1  
 [5] horseshoe_0.2.0    mixsqp_0.3-43      deconvolveR_1.2-1  yaml_2.2.1        
 [9] remotes_2.2.0      sessioninfo_1.1.1  ebnm_0.1-50        pillar_1.4.6      
[13] backports_1.1.10   lattice_0.20-41    glue_1.4.2         digest_0.6.27     
[17] promises_1.1.1     colorspace_1.4-1   htmltools_0.5.1.1  httpuv_1.5.4      
[21] Matrix_1.2-18      plyr_1.8.6         pkgconfig_2.0.3    invgamma_1.1      
[25] purrr_0.3.4        scales_1.1.1       processx_3.5.1     whisker_0.4       
[29] later_1.1.0.1      git2r_0.27.1       tibble_3.0.4       generics_0.1.0    
[33] ggplot2_3.3.2      ellipsis_0.3.1     withr_2.3.0        ashr_2.2-47       
[37] cli_2.4.0          magrittr_2.0.1     crayon_1.3.4       memoise_1.1.0     
[41] evaluate_0.14      ps_1.4.0           ebpm_0.0.1.3       fs_1.5.0          
[45] truncnorm_1.0-8    pkgbuild_1.1.0     data.table_1.13.2  tools_4.0.3       
[49] prettyunits_1.1.1  softImpute_1.4     REBayes_2.2        matrixStats_0.57.0
[53] lifecycle_1.0.0    stringr_1.4.0      trust_0.1-8        munsell_0.5.0     
[57] irlba_2.3.3        callr_3.6.0        compiler_4.0.3     caTools_1.18.0    
[61] rlang_0.4.10       grid_4.0.3         NNLM_0.4.4         rstudioapi_0.11   
[65] igraph_1.2.6       bitops_1.0-6       rmarkdown_2.5      gtable_0.3.0      
[69] DBI_1.1.0          reshape2_1.4.4     R6_2.4.1           knitr_1.30        
[73] dplyr_1.0.5        rprojroot_1.3-2    smashr_1.2-9       desc_1.2.0        
[77] stringi_1.5.3      SQUAREM_2020.5     Rcpp_1.0.5         vctrs_0.3.7       
[81] tidyselect_1.1.0   xfun_0.18