Last updated: 2018-05-17
workflowr checks: (Click a bullet for more information) ✔ R Markdown file: up-to-date
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
✔ Environment: empty
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
✔ Seed:
set.seed(20180501)
The command set.seed(20180501)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
✔ Session information: recorded
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
✔ Repository version: 3c0ccfd
wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: log/
Untracked files:
Untracked: analysis/binom.Rmd
Untracked: analysis/overdis.Rmd
Untracked: analysis/smashtutorial.Rmd
Untracked: docs/figure/smashtutorial.Rmd/
Unstaged changes:
Modified: analysis/ashpmean.Rmd
Modified: analysis/nugget.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
Let \(X_t\) be a Binomial observation with number of trials \(n_t\), \(t=1,2,\dots,T\).
ash
to binomial data \((X_t, n_t)\) and obtain the posterior mean \(\hat p=E(p|X,n)\), \(\hat p\in R^T\).smash.gaus
to \(Y_t\) with standard deviation \(\sqrt(\sigma^2+s_t^2)\) if \(\sigma^2\) is known. If it’s unknown, then either \(\sigma^2\) or \(\sigma^2+s_t^2\) should be estimated first. The output of smash.gaus
is denoted as \(\mu_t\).Methods for estimating \(\sigma^2\) or \(\sigma^2+s_t^2\) are discussed here.
library(smashrgen)
library(ggplot2)
simu_study=function(p,sigma,ntri,nsimu=100,seed=12345,
niter=1,family='DaubExPhase',ashp=TRUE,verbose=FALSE,robust=FALSE,
tol=1e-2){
set.seed(seed)
#smash.err=c()
smashgen.err=c()
smashgen.smashu.err=c()
#smashgen.mle.err=c()
n=length(p)
true.p=exp(p)/(1+exp(p))
for(k in 1:nsimu){
ng=rnorm(n,0,sigma)
m=exp(p+ng)
q=m/(1+m)
x=rbinom(n,ntri,q)
#fit data
#smash.out=smash.poiss(x)
smashgen.out=smash_gen(x,dist_family = 'binomial',sigma = sigma,ntri=ntri)
smashu.out=smash_gen(x,dist_family = 'binomial',y_var_est = 'smashu',ntri=ntri)
#mle.out=smash_gen(x,dist_family = 'poisson',y_var_est = 'mle')
#smash.err[k]=mse(exp(m),smash.out)
smashgen.err[k]=mse(true.p,smashgen.out)
smashgen.smashu.err[k]=mse(true.p,smashu.out)
#smashgen.mle.err[k]=mse(exp(m),mle.out)
}
return(list(est=list(smashgen.out=smashgen.out,smashu.out=smashu.out,x=x),err=data.frame(smashgen=smashgen.err, smashgen.smashu=smashgen.smashu.err)))
}
p=rep(0,128)
set.seed(111)
ntri=rpois(128,30)
result=simu_study(p,0.1,ntri)
par(mfrow=c(1,2))
plot(result$est$x/ntri,col='gray80',ylab='',main='smashgen: known variance')
lines(exp(p)/(1+exp(p)),col=1)
lines(result$est$smashgen.out,col=4)
legend("topright", # places a legend at the appropriate place
c("truth","smashgen"), # puts text in the legend
lty=c(1,1), # gives the legend appropriate symbols (lines)
lwd=c(1,1),
cex = 1,
col=c("black","blue"))
plot(result$est$x/ntri,col='gray80',ylab='',main='smashgen: unknown variance')
lines(exp(p)/(1+exp(p)),col=1)
lines(result$est$smashu.out,col=4)
legend("topright", # places a legend at the appropriate place
c("truth","smashgen"), # puts text in the legend
lty=c(1,1), # gives the legend appropriate symbols (lines)
lwd=c(1,1),
cex = 1,
col=c("black","blue"))
mean(result$err$smashgen)
[1] 8.957221e-05
mean(result$err$smashgen.smashu)
[1] 9.913624e-05
ggplot(df2gg(result$err),aes(x=method,y=MSE))+geom_boxplot(aes(fill=method))+labs(x='')
result=simu_study(p,1,ntri)
par(mfrow=c(1,2))
plot(result$est$x/ntri,col='gray80',ylab='',main='smashgen: known variance')
lines(exp(p)/(1+exp(p)),col=1)
lines(result$est$smashgen.out,col=4)
plot(result$est$x/ntri,col='gray80',ylab='',main='smashgen: unknown variance')
lines(exp(p)/(1+exp(p)),col=1)
lines(result$est$smashu.out,col=4)
mean(result$err$smashgen)
[1] 0.0007841879
mean(result$err$smashgen.smashu)
[1] 0.0008206814
ggplot(df2gg(result$err),aes(x=method,y=MSE))+geom_boxplot(aes(fill=method))+labs(x='')
p=rep(-3,128)
result=simu_study(p,1,ntri)
par(mfrow=c(1,2))
plot(result$est$x/ntri,col='gray80',ylab='',main='smashgen: known variance')
lines(exp(p)/(1+exp(p)),col=1)
lines(result$est$smashgen.out,col=4)
plot(result$est$x/ntri,col='gray80',ylab='',main='smashgen: unknown variance')
lines(exp(p)/(1+exp(p)),col=1)
lines(result$est$smashu.out,col=4)
mean(result$err$smashgen)
[1] 2.175465e-05
mean(result$err$smashgen.smashu)
[1] 2.726665e-05
ggplot(df2gg(result$err),aes(x=method,y=MSE))+geom_boxplot(aes(fill=method))+labs(x='')
p=c(rep(-2,128), rep(0, 128), rep(2, 128), rep(-2, 128))
set.seed(111)
ntri=rpois(512,30)
result=simu_study(p,0.1,ntri)
par(mfrow=c(1,2))
plot(result$est$x/ntri,col='gray80',ylab='',main='smashgen: known variance')
lines(exp(p)/(1+exp(p)),col=1)
lines(result$est$smashgen.out,col=4)
plot(result$est$x/ntri,col='gray80',ylab='',main='smashgen: unknown variance')
lines(exp(p)/(1+exp(p)),col=1)
lines(result$est$smashu.out,col=4)
mean(result$err$smashgen)
[1] 0.0003595882
mean(result$err$smashgen.smashu)
[1] 0.0004350061
ggplot(df2gg(result$err),aes(x=method,y=MSE))+geom_boxplot(aes(fill=method))+labs(x='')
p=c(rep(-2,128), rep(0, 128), rep(2, 128), rep(-2, 128))
set.seed(111)
ntri=rpois(512,30)
result=simu_study(p,1,ntri)
par(mfrow=c(1,2))
plot(result$est$x/ntri,col='gray80',ylab='',main='smashgen: known variance')
lines(exp(p)/(1+exp(p)),col=1)
lines(result$est$smashgen.out,col=4)
plot(result$est$x/ntri,col='gray80',ylab='',main='smashgen: unknown variance')
lines(exp(p)/(1+exp(p)),col=1)
lines(result$est$smashu.out,col=4)
mean(result$err$smashgen)
[1] 0.001850991
mean(result$err$smashgen.smashu)
[1] 0.001842285
ggplot(df2gg(result$err),aes(x=method,y=MSE))+geom_boxplot(aes(fill=method))+labs(x='')
p=c(rep(-2,128), rep(0, 128), rep(2, 128), rep(-2, 128))
set.seed(111)
ntri=rpois(512,50)-20
result=simu_study(p,1,ntri)
par(mfrow=c(1,2))
plot(result$est$x/ntri,col='gray80',ylab='',main='smashgen: known variance')
lines(exp(p)/(1+exp(p)),col=1)
lines(result$est$smashgen.out,col=4)
plot(result$est$x/ntri,col='gray80',ylab='',main='smashgen: unknown variance')
lines(exp(p)/(1+exp(p)),col=1)
lines(result$est$smashu.out,col=4)
mean(result$err$smashgen)
[1] 0.001875976
mean(result$err$smashgen.smashu)
[1] 0.001847042
ggplot(df2gg(result$err),aes(x=method,y=MSE))+geom_boxplot(aes(fill=method))+labs(x='')
m=seq(0,1,length.out = 256)
h = c(4, 5, 3, 4, 5, 4.2, 2.1, 4.3, 3.1, 5.1, 4.2)
w = c(0.005, 0.005, 0.006, 0.01, 0.01, 0.03, 0.01, 0.01, 0.005,0.008,0.005)
t=c(.1,.13,.15,.23,.25,.4,.44,.65,.76,.78,.81)
f = c()
for(i in 1:length(m)){
f[i]=sum(h*(1+((m[i]-t)/w)^4)^(-1))
}
p=f-3
set.seed(111)
ntri=rpois(256,30)
result=simu_study(p,0.1,ntri)
par(mfrow=c(1,2))
plot(result$est$x/ntri,col='gray80',ylab='',main='smashgen: known variance')
lines(exp(p)/(1+exp(p)),col=1)
lines(result$est$smashgen.out,col=4)
plot(result$est$x/ntri,col='gray80',ylab='',main='smashgen: unknown variance')
lines(exp(p)/(1+exp(p)),col=1)
lines(result$est$smashu.out,col=4)
mean(result$err$smashgen)
[1] 0.001821751
mean(result$err$smashgen.smashu)
[1] 0.005024706
ggplot(df2gg(result$err),aes(x=method,y=MSE))+geom_boxplot(aes(fill=method))+labs(x='')
set.seed(111)
ntri=rpois(256,30)
result=simu_study(p,1,ntri)
par(mfrow=c(1,2))
plot(result$est$x/ntri,col='gray80',ylab='',main='smashgen: known variance')
lines(exp(p)/(1+exp(p)),col=1)
lines(result$est$smashgen.out,col=4)
plot(result$est$x/ntri,col='gray80',ylab='',main='smashgen: unknown variance')
lines(exp(p)/(1+exp(p)),col=1)
lines(result$est$smashu.out,col=4)
mean(result$err$smashgen)
[1] 0.0124867
mean(result$err$smashgen.smashu)
[1] 0.01233137
ggplot(df2gg(result$err),aes(x=method,y=MSE))+geom_boxplot(aes(fill=method))+labs(x='')
set.seed(111)
ntri=rpois(256,50)-20
result=simu_study(p,1,ntri)
par(mfrow=c(1,2))
plot(result$est$x/ntri,col='gray80',ylab='',main='smashgen: known variance')
lines(exp(p)/(1+exp(p)),col=1)
lines(result$est$smashgen.out,col=4)
plot(result$est$x/ntri,col='gray80',ylab='',main='smashgen: unknown variance')
lines(exp(p)/(1+exp(p)),col=1)
lines(result$est$smashu.out,col=4)
mean(result$err$smashgen)
[1] 0.01249222
mean(result$err$smashgen.smashu)
[1] 0.01226534
ggplot(df2gg(result$err),aes(x=method,y=MSE))+geom_boxplot(aes(fill=method))+labs(x='')
set.seed(111)
ntri=rpois(256,20)-9
result=simu_study(p,1,ntri)
par(mfrow=c(1,2))
plot(result$est$x/ntri,col='gray80',ylab='',main='smashgen: known variance')
lines(exp(p)/(1+exp(p)),col=1)
lines(result$est$smashgen.out,col=4)
plot(result$est$x/ntri,col='gray80',ylab='',main='smashgen: unknown variance')
lines(exp(p)/(1+exp(p)),col=1)
lines(result$est$smashu.out,col=4)
mean(result$err$smashgen)
[1] 0.02209255
mean(result$err$smashgen.smashu)
[1] 0.01565017
ggplot(df2gg(result$err),aes(x=method,y=MSE))+geom_boxplot(aes(fill=method))+labs(x='')
spike.f = function(x) (0.75 * exp(-500 * (x - 0.23)^2) + 1.5 * exp(-2000 * (x - 0.33)^2) + 3 * exp(-8000 * (x - 0.47)^2) + 2.25 * exp(-16000 *
(x - 0.69)^2) + 0.5 * exp(-32000 * (x - 0.83)^2))
n = 256
t = 1:n/n
p = spike.f(t)*2-2
set.seed(111)
ntri=rpois(256,20)-9
result=simu_study(p,0.1,ntri)
par(mfrow=c(1,2))
plot(result$est$x/ntri,col='gray80',ylab='',main='smashgen: known variance')
lines(exp(p)/(1+exp(p)),col=1)
lines(result$est$smashgen.out,col=4)
plot(result$est$x/ntri,col='gray80',ylab='',main='smashgen: unknown variance')
lines(exp(p)/(1+exp(p)),col=1)
lines(result$est$smashu.out,col=4)
mean(result$err$smashgen)
[1] 0.003198372
mean(result$err$smashgen.smashu)
[1] 0.003931562
ggplot(df2gg(result$err),aes(x=method,y=MSE))+geom_boxplot(aes(fill=method))+labs(x='')
set.seed(111)
ntri=rpois(256,20)-9
result=simu_study(p,1,ntri)
par(mfrow=c(1,2))
plot(result$est$x/ntri,col='gray80',ylab='',main='smashgen: known variance')
lines(exp(p)/(1+exp(p)),col=1)
lines(result$est$smashgen.out,col=4)
plot(result$est$x/ntri,col='gray80',ylab='',main='smashgen: unknown variance')
lines(exp(p)/(1+exp(p)),col=1)
lines(result$est$smashu.out,col=4)
mean(result$err$smashgen)
[1] 0.01327303
mean(result$err$smashgen.smashu)
[1] 0.009787627
ggplot(df2gg(result$err),aes(x=method,y=MSE))+geom_boxplot(aes(fill=method))+labs(x='')
sessionInfo()
R version 3.4.0 (2017-04-21)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 16299)
Matrix products: default
locale:
[1] LC_COLLATE=English_United States.1252
[2] LC_CTYPE=English_United States.1252
[3] LC_MONETARY=English_United States.1252
[4] LC_NUMERIC=C
[5] LC_TIME=English_United States.1252
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] ggplot2_2.2.1 smashrgen_0.1.0 wavethresh_4.6.8 MASS_7.3-47
[5] caTools_1.17.1 ashr_2.2-7 smashr_1.1-5
loaded via a namespace (and not attached):
[1] Rcpp_0.12.16 plyr_1.8.4 compiler_3.4.0
[4] git2r_0.21.0 workflowr_1.0.1 R.methodsS3_1.7.1
[7] R.utils_2.6.0 bitops_1.0-6 iterators_1.0.8
[10] tools_3.4.0 digest_0.6.13 tibble_1.3.3
[13] evaluate_0.10 gtable_0.2.0 lattice_0.20-35
[16] rlang_0.1.2 Matrix_1.2-9 foreach_1.4.3
[19] yaml_2.1.19 parallel_3.4.0 stringr_1.3.0
[22] knitr_1.20 REBayes_1.3 rprojroot_1.3-2
[25] grid_3.4.0 data.table_1.10.4-3 rmarkdown_1.8
[28] magrittr_1.5 whisker_0.3-2 backports_1.0.5
[31] scales_0.4.1 codetools_0.2-15 htmltools_0.3.5
[34] assertthat_0.2.0 colorspace_1.3-2 labeling_0.3
[37] stringi_1.1.6 Rmosek_8.0.69 lazyeval_0.2.1
[40] munsell_0.4.3 doParallel_1.0.11 pscl_1.4.9
[43] truncnorm_1.0-7 SQUAREM_2017.10-1 R.oo_1.21.0
This reproducible R Markdown analysis was created with workflowr 1.0.1