Last updated: 2018-05-25
workflowr checks: (Click a bullet for more information) ✔ R Markdown file: up-to-date
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
✔ Environment: empty
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
✔ Seed:
set.seed(20180501)
The command set.seed(20180501)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
✔ Session information: recorded
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
✔ Repository version: c89829a
wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: log/
Untracked files:
Untracked: analysis/binom.Rmd
Untracked: analysis/glm.Rmd
Untracked: analysis/overdis.Rmd
Untracked: analysis/poiwavelog.Rmd
Untracked: analysis/smashtutorial.Rmd
Untracked: analysis/test.Rmd
Untracked: data/treas_bill.csv
Untracked: docs/figure/smashtutorial.Rmd/
Untracked: docs/figure/test.Rmd/
Unstaged changes:
Modified: analysis/ashpmean.Rmd
Modified: analysis/index.Rmd
Modified: analysis/nugget.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | c89829a | Dongyue | 2018-05-25 | covariate smooth |
Now suppose at each \(t\), \(Y_t=X_t\beta+\mu_t+\epsilon_t\), where \(\mu\) has smooth structure and \(\epsilon_t\sim N(0,\sigma^2_t)\).
smash.gaus
to \(e\) and obtain \(\hat\mu_t, \hat\sigma_t\), \(t=1,2,\dots,T\).Rationale: the stucture of \(\mu\) cannot be explained by the ordinary least square in step 1 so it is contained in the residual \(e\). Thus \(e\) consists of \(\mu\) and noises. Using smash.gaus
recovers \(\mu\) and estimates \(\sigma^2\).
We now show the performance of smash when covariates exist. The signal-to-noise ratio(SNR) is fixed at 2.
(Note: The SNR is the ratio of the sample standard deviation of the signal (although it is not random) to the standard deviation of the added noise. If the signal is constant, the SNR is mean(signal) to standard deviation of the added noise)
The length of sequence is \(n=256\).
simu_study_x=function(mu,beta,snr=2,nsimu=100,filter.number=1,family='DaubExPhase',seed=1234){
set.seed(1234)
n=length(mu)
p=length(beta)
X=matrix(rnorm(n*p,0,1),nrow=n,byrow = T)
cte=X%*%beta
sd.noise=sd(mu)/snr
sd.noise=ifelse(sd.noise==0,mean(mu),sd.noise)
mse.mu=c()
mse.beta=c()
for(i in 1:nsimu){
y=cte+mu+rnorm(n,0,sd.noise)
s.out=smash.gaus.x(X,y,filter.number,family)
mu.hat=s.out$mu.hat
beta.hat=s.out$beta.hat
mse.mu[i]=mse(mu,mu.hat)
mse.beta[i]=mse(beta,beta.hat)
}
return(list(mse.mu=mse.mu,mse.beta=mse.beta,mu.hat=mu.hat,beta.hat=beta.hat,y=y))
}
library(smashrgen)
library(ggplot2)
n=256
mu=c(rep(1,64),rep(2,64),rep(5,64),rep(1,64))
beta=c(1,2,3,4,5)
beta=beta/norm(beta,'2')
result=simu_study_x(mu,beta)
boxplot(result$mse.mu,main='Estimate of mu',ylab='MSE')
boxplot(result$mse.beta,main='Estimate of beta',ylab='MSE')
plot(result$y,col='gray80')
lines(mu)
lines(result$mu.hat,col=4)
plot(beta,result$beta.hat,xlab = 'True beta', ylab = 'Beta hat')
abline(0,1)
f=function(x){return(0.5 + 0.2*cos(4*pi*x) + 0.1*cos(24*pi*x))}
mu=f((1:n)/n)
result=simu_study_x(mu,beta,filter.number = 8,family='DaubLeAsymm')
boxplot(result$mse.mu,main='Estimate of mu',ylab='MSE')
boxplot(result$mse.beta,main='Estimate of beta',ylab='MSE')
plot(result$y,col='gray80')
lines(mu)
lines(result$mu.hat,col=4)
plot(beta,result$beta.hat,xlab = 'True beta', ylab = 'Beta hat')
abline(0,1)
r=function(x,c){return((x-c)^2*(x>c)*(x<=1))}
f=function(x){return(0.8 − 30*r(x,0.1) + 60*r(x, 0.2) − 30*r(x, 0.3) +
500*r(x, 0.35) − 1000*r(x, 0.37) + 1000*r(x, 0.41) − 500*r(x, 0.43) +
7.5*r(x, 0.5) − 15*r(x, 0.7) + 7.5*r(x, 0.9))}
mu=f(1:n/n)
result=simu_study_x(mu,beta,filter.number = 8,family='DaubLeAsymm')
boxplot(result$mse.mu,main='Estimate of mu',ylab='MSE')
boxplot(result$mse.beta,main='Estimate of beta',ylab='MSE')
plot(result$y,col='gray80')
lines(mu)
lines(result$mu.hat,col=4)
plot(beta,result$beta.hat,xlab = 'True beta', ylab = 'Beta hat')
abline(0,1)
sessionInfo()
R version 3.4.0 (2017-04-21)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 16299)
Matrix products: default
locale:
[1] LC_COLLATE=English_United States.1252
[2] LC_CTYPE=English_United States.1252
[3] LC_MONETARY=English_United States.1252
[4] LC_NUMERIC=C
[5] LC_TIME=English_United States.1252
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] ggplot2_2.2.1 smashrgen_0.1.0 wavethresh_4.6.8 MASS_7.3-47
[5] caTools_1.17.1 ashr_2.2-7 smashr_1.1-5
loaded via a namespace (and not attached):
[1] Rcpp_0.12.16 plyr_1.8.4 compiler_3.4.0
[4] git2r_0.21.0 workflowr_1.0.1 R.methodsS3_1.7.1
[7] R.utils_2.6.0 bitops_1.0-6 iterators_1.0.8
[10] tools_3.4.0 digest_0.6.13 tibble_1.3.3
[13] evaluate_0.10 gtable_0.2.0 lattice_0.20-35
[16] rlang_0.1.2 Matrix_1.2-9 foreach_1.4.3
[19] yaml_2.1.19 parallel_3.4.0 stringr_1.3.0
[22] knitr_1.20 REBayes_1.3 rprojroot_1.3-2
[25] grid_3.4.0 data.table_1.10.4-3 rmarkdown_1.8
[28] magrittr_1.5 whisker_0.3-2 backports_1.0.5
[31] scales_0.4.1 codetools_0.2-15 htmltools_0.3.5
[34] assertthat_0.2.0 colorspace_1.3-2 stringi_1.1.6
[37] Rmosek_8.0.69 lazyeval_0.2.1 munsell_0.4.3
[40] doParallel_1.0.11 pscl_1.4.9 truncnorm_1.0-7
[43] SQUAREM_2017.10-1 R.oo_1.21.0
This reproducible R Markdown analysis was created with workflowr 1.0.1