Last updated: 2018-10-07
workflowr checks: (Click a bullet for more information) ✔ R Markdown file: up-to-date
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
✔ Environment: empty
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
✔ Seed:
set.seed(20180501)
The command set.seed(20180501)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
✔ Session information: recorded
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
✔ Repository version: 181fb98
wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: data/.DS_Store
Untracked files:
Untracked: analysis/chipexoeg.Rmd
Untracked: data/chipexo_examples/
Untracked: data/chipseq_examples/
Unstaged changes:
Modified: analysis/sigma.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
Model: \(X\sim Poi(\mu)\) and define \(y=\log m+\frac{x-m}{m}\)
Previously, we used \(m=\)ash posterior mean of x. The problem is that shrinkage effect is too strong that for large observations \(x\), the approximated normal data points are too large. Hence, after taking exponential of estimated normal mean, the estimation ‘blow up’.
Now we try to do Taylor series expansion around \(\log x\)(MLE) for non-zero \(x\) and around ash posterior mean around zero \(x\). In other words, now \(m=\)ash posterior mean of zero \(x\)s and \(m=x\) for non-zero \(x\)s.
library(ashr)
library(smashrgen)
spike.f = function(x) (0.75 * exp(-500 * (x - 0.23)^2) + 1.5 * exp(-2000 * (x - 0.33)^2) + 3 * exp(-8000 * (x - 0.47)^2) + 2.25 * exp(-16000 *
(x - 0.69)^2) + 0.5 * exp(-32000 * (x - 0.83)^2))
n = 256
t = 1:n/n
m = spike.f(t)
m=m*2+0.1
range(m)
[1] 0.100000 6.025467
sig=0
set.seed(12345)
lambda=exp(log(m)+rnorm(n,0,sig))
x=rpois(n,lambda)
x.ash=ash(rep(0,n),1,lik=lik_pois(x))$result$PosteriorMean
m.hat=x.ash
m.hat[which(x!=0)]=(x[which(x!=0)])
y=log(m.hat)+(x-m.hat)/m.hat
m.tilde=exp(smash.gaus(y,sigma = sqrt(sig^2+1/m.hat)))
m.tilde2=exp(smash.gaus(y))
par(mfrow=c(2,2))
plot(x,col='grey80',ylab='',xlab='',main='n=256,nugget=0')
lines(m,col='grey60')
lines(m.tilde,col=2)
lines(m.tilde2,col=4)
legend('topleft',c('data','true mean','smashgen-known var','smashgen-unknown var'),lty=c(0,1,1,1),pch=c(1,NA,NA,NA),col=c('grey80','grey60',2,4))
#################
sig=0.1
set.seed(12345)
lambda=exp(log(m)+rnorm(n,0,sig))
x=rpois(n,lambda)
x.ash=ash(rep(0,n),1,lik=lik_pois(x))$result$PosteriorMean
m.hat=x.ash
m.hat[which(x!=0)]=(x[which(x!=0)])
y=log(m.hat)+(x-m.hat)/m.hat
m.tilde=exp(smash.gaus(y,sigma = sqrt(sig^2+1/m.hat)))
m.tilde2=exp(smash.gaus(y))
plot(x,col='grey80',ylab='',xlab='',main='n=256,nugget=0.1')
lines(m,col='grey60')
lines(m.tilde,col=2)
lines(m.tilde2,col=4)
legend('topleft',c('data','true mean','smashgen-known var','smashgen-unknown var'),lty=c(0,1,1,1),pch=c(1,NA,NA,NA),col=c('grey80','grey60',2,4))
#################
sig=1
set.seed(12345)
lambda=exp(log(m)+rnorm(n,0,sig))
x=rpois(n,lambda)
x.ash=ash(rep(0,n),1,lik=lik_pois(x))$result$PosteriorMean
m.hat=x.ash
m.hat[which(x!=0)]=(x[which(x!=0)])
y=log(m.hat)+(x-m.hat)/m.hat
m.tilde=exp(smash.gaus(y,sigma = sqrt(sig^2+1/m.hat)))
m.tilde2=exp(smash.gaus(y))
plot(x,col='grey80',ylab='',xlab='',main='n=256,nugget=1')
lines(m,col='grey60')
lines(m.tilde,col=2)
lines(m.tilde2,col=4)
legend('topleft',c('data','true mean','smashgen-known var','smashgen-unknown var'),lty=c(0,1,1,1),pch=c(1,NA,NA,NA),col=c('grey80','grey60',2,4))
plot(x,col='grey80',ylab='',xlab='',main='Previous verison using ash posterior mean, nugget=1')
lines(m,col='grey60')
lines(smash_gen_lite(x))
legend('topleft',c('data','true mean','fit'),lty=c(0,1,1),pch=c(1,NA,NA),col=c('grey80','grey60',1))
Version | Author | Date |
---|---|---|
3773b5b | Dongyue Xie | 2018-10-07 |
n = 512
t = 1:n/n
m = spike.f(t)
m=m*2+0.1
range(m)
[1] 0.100000 6.076316
sig=0
set.seed(12345)
lambda=exp(log(m)+rnorm(n,0,sig))
x=rpois(n,lambda)
x.ash=ash(rep(0,n),1,lik=lik_pois(x))$result$PosteriorMean
m.hat=x.ash
m.hat[which(x!=0)]=(x[which(x!=0)])
y=log(m.hat)+(x-m.hat)/m.hat
m.tilde=exp(smash.gaus(y,sigma = sqrt(sig^2+1/m.hat)))
m.tilde2=exp(smash.gaus(y))
par(mfrow=c(2,2))
plot(x,col='grey80',ylab='',xlab='',main='n=512,nugget=0')
lines(m,col='grey60')
lines(m.tilde,col=2)
lines(m.tilde2,col=4)
legend('topleft',c('data','true mean','smashgen-known var','smashgen-unknown var'),lty=c(0,1,1,1),pch=c(1,NA,NA,NA),col=c('grey80','grey60',2,4))
#################
sig=0.1
set.seed(12345)
lambda=exp(log(m)+rnorm(n,0,sig))
x=rpois(n,lambda)
x.ash=ash(rep(0,n),1,lik=lik_pois(x))$result$PosteriorMean
m.hat=x.ash
m.hat[which(x!=0)]=(x[which(x!=0)])
y=log(m.hat)+(x-m.hat)/m.hat
m.tilde=exp(smash.gaus(y,sigma = sqrt(sig^2+1/m.hat)))
m.tilde2=exp(smash.gaus(y))
plot(x,col='grey80',ylab='',xlab='',main='n=512,nugget=0.1')
lines(m,col='grey60')
lines(m.tilde,col=2)
lines(m.tilde2,col=4)
legend('topleft',c('data','true mean','smashgen-known var','smashgen-unknown var'),lty=c(0,1,1,1),pch=c(1,NA,NA,NA),col=c('grey80','grey60',2,4))
#################
sig=1
set.seed(12345)
lambda=exp(log(m)+rnorm(n,0,sig))
x=rpois(n,lambda)
x.ash=ash(rep(0,n),1,lik=lik_pois(x))$result$PosteriorMean
m.hat=x.ash
m.hat[which(x!=0)]=(x[which(x!=0)])
y=log(m.hat)+(x-m.hat)/m.hat
m.tilde=exp(smash.gaus(y,sigma = sqrt(sig^2+1/m.hat)))
m.tilde2=exp(smash.gaus(y))
plot(x,col='grey80',ylab='',xlab='',main='n=512,nugget=1')
lines(m,col='grey60')
lines(m.tilde,col=2)
lines(m.tilde2,col=4)
legend('topleft',c('data','true mean','smashgen-known var','smashgen-unknown var'),lty=c(0,1,1,1),pch=c(1,NA,NA,NA),col=c('grey80','grey60',2,4))
plot(x,col='grey80',ylab='',xlab='',main='Previous verison using ash posterior mean, nugget=1')
lines(m,col='grey60')
lines(smash_gen_lite(x))
legend('topleft',c('data','true mean','fit'),lty=c(0,1,1),pch=c(1,NA,NA),col=c('grey80','grey60',1))
Version | Author | Date |
---|---|---|
3773b5b | Dongyue Xie | 2018-10-07 |
sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS High Sierra 10.13.6
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] smashrgen_0.1.0 wavethresh_4.6.8 MASS_7.3-50 caTools_1.17.1.1
[5] smashr_1.2-0 ashr_2.2-7
loaded via a namespace (and not attached):
[1] Rcpp_0.12.18 compiler_3.5.1 git2r_0.23.0
[4] workflowr_1.1.1 R.methodsS3_1.7.1 R.utils_2.7.0
[7] bitops_1.0-6 iterators_1.0.10 tools_3.5.1
[10] digest_0.6.17 evaluate_0.11 lattice_0.20-35
[13] Matrix_1.2-14 foreach_1.4.4 yaml_2.2.0
[16] parallel_3.5.1 stringr_1.3.1 knitr_1.20
[19] REBayes_1.3 rprojroot_1.3-2 grid_3.5.1
[22] data.table_1.11.6 rmarkdown_1.10 magrittr_1.5
[25] whisker_0.3-2 backports_1.1.2 codetools_0.2-15
[28] htmltools_0.3.6 assertthat_0.2.0 stringi_1.2.4
[31] Rmosek_8.0.69 doParallel_1.0.14 pscl_1.5.2
[34] truncnorm_1.0-8 SQUAREM_2017.10-1 R.oo_1.22.0
This reproducible R Markdown analysis was created with workflowr 1.1.1