Last updated: 2018-05-24
workflowr checks: (Click a bullet for more information) ✔ R Markdown file: up-to-date
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
✔ Environment: empty
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
✔ Seed:
set.seed(20180501)
The command set.seed(20180501)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
✔ Session information: recorded
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
✔ Repository version: 1abd9ff
wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: log/
Untracked files:
Untracked: analysis/binom.Rmd
Untracked: analysis/glm.Rmd
Untracked: analysis/overdis.Rmd
Untracked: analysis/smashtutorial.Rmd
Untracked: analysis/test.Rmd
Untracked: data/treas_bill.csv
Untracked: docs/figure/smashtutorial.Rmd/
Untracked: docs/figure/test.Rmd/
Unstaged changes:
Modified: analysis/ashpmean.Rmd
Modified: analysis/nugget.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | 1abd9ff | Dongyue | 2018-05-24 | increase n |
simu_study_basis=function(mu,nsimu=100,seed=1234,niter=1,robust=F){
n=length(mu)
set.seed(seed)
smash.err=c()
gen.haar.err=c()
gen.sym.err=c()
for(iter in 1:nsimu){
y=rpois(n,mu)
smash.out=smash.poiss(y)
gen.haar.out=smash_gen(y,niter = niter,robust=robust)
gen.sym.out=smash_gen(y,wave_family = 'DaubLeAsymm',filter.number = 8,niter=niter,robust=robust)
smash.err[iter]=mse(smash.out,mu)
gen.haar.err[iter]=mse(gen.haar.out,mu)
gen.sym.err[iter]=mse(gen.sym.out,mu)
}
return(list(est=data.frame(smash=smash.out,smashgen.haar=gen.haar.out,smashgen.sym=gen.sym.out,y=y),err=data.frame(smash=smash.err,smashgen.haar=gen.haar.err,smashgen.sym=gen.sym.err)))
}
library(smashrgen)
library(ggplot2)
mu=DJ.EX(256,signal = 7)$heavi
mu=(mu-min(mu)+5)*10
range(mu)
[1] 50.0000 285.1265
result=simu_study_basis(mu)
ggplot(df2gg(result$err),aes(x=method,y=MSE))+geom_boxplot(aes(fill=method))+labs(x='')
par(mfrow=c(2,2))
plot(result$est$y,col='gray80',main='smash')
lines(result$est$smash,col=4)
lines(mu)
plot(result$est$y,col='gray80',main='smashgen-Haar')
lines(result$est$smashgen.haar,col=4)
lines(mu)
plot(result$est$y,col='gray80',main='smashgen-Symm8')
lines(result$est$smashgen.sym,col=4)
lines(mu)
mu=DJ.EX(256,signal = 7)$doppler
mu=(mu-min(mu)+5)*10
range(mu)
[1] 50.0000 292.5644
#plot(mu,type='l')
result=simu_study_basis(mu)
ggplot(df2gg(result$err),aes(x=method,y=MSE))+geom_boxplot(aes(fill=method))+labs(x='')
par(mfrow=c(2,2))
plot(result$est$y,col='gray80',main='smash')
lines(result$est$smash,col=4)
lines(mu)
plot(result$est$y,col='gray80',main='smashgen-Haar')
lines(result$est$smashgen.haar,col=4)
lines(mu)
plot(result$est$y,col='gray80',main='smashgen-Symm8')
lines(result$est$smashgen.sym,col=4)
lines(mu)
r=function(x,c){return((x-c)^2*(x>c)*(x<=1))}
f=function(x){return(0.8 − 30*r(x,0.1) + 60*r(x, 0.2) − 30*r(x, 0.3) +
500*r(x, 0.35) − 1000*r(x, 0.37) + 1000*r(x, 0.41) − 500*r(x, 0.43) +
7.5*r(x, 0.5) − 15*r(x, 0.7) + 7.5*r(x, 0.9))}
mu=f(1:256/256)
mu=mu*250
range(mu)
[1] 50 200
result=simu_study_basis(mu)
ggplot(df2gg(result$err),aes(x=method,y=MSE))+geom_boxplot(aes(fill=method))+labs(x='')
par(mfrow=c(2,2))
plot(result$est$y,col='gray80',main='smash')
lines(result$est$smash,col=4)
lines(mu)
plot(result$est$y,col='gray80',main='smashgen-Haar')
lines(result$est$smashgen.haar,col=4)
lines(mu)
plot(result$est$y,col='gray80',main='smashgen-Symm8')
lines(result$est$smashgen.sym,col=4)
lines(mu)
range of \(\mu\) roughly \((1,6)\).
mu=c(rep(50,64), rep(80, 64), rep(160, 64), rep(50, 64))
result=simu_study_basis(mu)
ggplot(df2gg(result$err),aes(x=method,y=MSE))+geom_boxplot(aes(fill=method))+labs(x='')
par(mfrow=c(2,2))
plot(result$est$y,col='gray80',main='smash')
lines(result$est$smash,col=4)
lines(mu)
plot(result$est$y,col='gray80',main='smashgen-Haar')
lines(result$est$smashgen.haar,col=4)
lines(mu)
plot(result$est$y,col='gray80',main='smashgen-Symm8')
lines(result$est$smashgen.sym,col=4)
lines(mu)
f=function(x){return(0.5 + 0.2*cos(4*pi*x) + 0.1*cos(24*pi*x))}
mu=f(1:256/256)
mu=mu*250
range(mu)
[1] 56.3843 200.0000
result=simu_study_basis(mu)
ggplot(df2gg(result$err),aes(x=method,y=MSE))+geom_boxplot(aes(fill=method))+labs(x='')
par(mfrow=c(2,2))
plot(result$est$y,col='gray80',main='smash')
lines(result$est$smash,col=4)
lines(mu)
plot(result$est$y,col='gray80',main='smashgen-Haar')
lines(result$est$smashgen.haar,col=4)
lines(mu)
plot(result$est$y,col='gray80',main='smashgen-Symm8')
lines(result$est$smashgen.sym,col=4)
lines(mu)
g=function(x){return((1 − cos(pi*x))/2)}
f=function(x){return(0.3*sin(3*pi*(g(g(g(g(x)))) + x) + 0.5))}
mu=f(1:256/256)
mu=mu*250+159
range(mu)
[1] 84.00303 233.99963
result=simu_study_basis(mu)
ggplot(df2gg(result$err),aes(x=method,y=MSE))+geom_boxplot(aes(fill=method))+labs(x='')
par(mfrow=c(2,2))
plot(result$est$y,col='gray80',main='smash')
lines(result$est$smash,col=4)
lines(mu)
plot(result$est$y,col='gray80',main='smashgen-Haar')
lines(result$est$smashgen.haar,col=4)
lines(mu)
plot(result$est$y,col='gray80',main='smashgen-Symm8')
lines(result$est$smashgen.sym,col=4)
lines(mu)
sessionInfo()
R version 3.4.0 (2017-04-21)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 16299)
Matrix products: default
locale:
[1] LC_COLLATE=English_United States.1252
[2] LC_CTYPE=English_United States.1252
[3] LC_MONETARY=English_United States.1252
[4] LC_NUMERIC=C
[5] LC_TIME=English_United States.1252
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] ggplot2_2.2.1 smashrgen_0.1.0 wavethresh_4.6.8 MASS_7.3-47
[5] caTools_1.17.1 ashr_2.2-7 smashr_1.1-5
loaded via a namespace (and not attached):
[1] Rcpp_0.12.16 plyr_1.8.4 compiler_3.4.0
[4] git2r_0.21.0 workflowr_1.0.1 R.methodsS3_1.7.1
[7] R.utils_2.6.0 bitops_1.0-6 iterators_1.0.8
[10] tools_3.4.0 digest_0.6.13 tibble_1.3.3
[13] evaluate_0.10 gtable_0.2.0 lattice_0.20-35
[16] rlang_0.1.2 Matrix_1.2-9 foreach_1.4.3
[19] yaml_2.1.19 parallel_3.4.0 stringr_1.3.0
[22] knitr_1.20 REBayes_1.3 rprojroot_1.3-2
[25] grid_3.4.0 data.table_1.10.4-3 rmarkdown_1.8
[28] magrittr_1.5 whisker_0.3-2 backports_1.0.5
[31] scales_0.4.1 codetools_0.2-15 htmltools_0.3.5
[34] assertthat_0.2.0 colorspace_1.3-2 labeling_0.3
[37] stringi_1.1.6 Rmosek_8.0.69 lazyeval_0.2.1
[40] munsell_0.4.3 doParallel_1.0.11 pscl_1.4.9
[43] truncnorm_1.0-7 SQUAREM_2017.10-1 R.oo_1.21.0
This reproducible R Markdown analysis was created with workflowr 1.0.1