Last updated: 2018-05-26
workflowr checks: (Click a bullet for more information) ✔ R Markdown file: up-to-date 
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
 ✔ Environment: empty 
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
 ✔ Seed: 
set.seed(20180501) 
The command set.seed(20180501) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
 ✔ Session information: recorded 
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
 ✔ Repository version: 6fdb0c7 
wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    log/
Untracked files:
    Untracked:  analysis/binom.Rmd
    Untracked:  analysis/glm.Rmd
    Untracked:  analysis/glmcovariate.Rmd
    Untracked:  analysis/overdis.Rmd
    Untracked:  analysis/smashtutorial.Rmd
    Untracked:  analysis/test.Rmd
    Untracked:  data/treas_bill.csv
    Untracked:  docs/figure/poiwavelog.Rmd/
    Untracked:  docs/figure/smashtutorial.Rmd/
    Untracked:  docs/figure/test.Rmd/
Unstaged changes:
    Modified:   analysis/ashpmean.Rmd
    Modified:   analysis/nugget.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes. 
| File | Version | Author | Date | Message | 
|---|---|---|---|---|
| Rmd | 6fdb0c7 | Dongyue | 2018-05-26 | log scale | 
Compare smash and smashgen on estimating \(\mu\) and \(\log\mu\). \(T=256\), 100 runs.
mu=c(rep(1,64), rep(20, 64), rep(50, 64), rep(1, 64))
result=simu_study_scale(mu,nsimu=100)
ggplot(df2gg(result$err.logmu),aes(x=method,y=MSE))+geom_boxplot(aes(fill=method))+labs(x='')+ggtitle('log mu')

ggplot(df2gg(result$err.mu),aes(x=method,y=MSE))+geom_boxplot(aes(fill=method))+labs(x='')+ggtitle('mu')

ggplot(result$est.mu,aes(1:256))+geom_line(aes(y=smash,colour='smash'))+geom_line(aes(y=smashgen.haar,colour='smashgen.haar'))+geom_line(aes(y=smashgen.sym,colour='smashgen.symm8'))+geom_line(aes(y=mu,colour='mu'))+ggtitle('mu')+labs(x='',y='')+geom_point(aes(y=y),color='gray70',shape=1)+scale_colour_manual(values=c('black',"red", "green",'blue'))

ggplot(result$est.logmu,aes(1:256))+geom_line(aes(y=smash,colour='smash'))+geom_line(aes(y=smashgen.haar,colour='smashgen.haar'))+geom_line(aes(y=smashgen.sym,colour='smashgen.symm8'))+geom_line(aes(y=log(mu),colour='log mu'))+ggtitle('log mu')+labs(x='',y='')+scale_colour_manual(values=c('black',"red", "green",'blue'))

mu=c(rep(50,64), rep(70, 64), rep(100, 64), rep(50, 64))
result=simu_study_scale(mu,nsimu=100)
ggplot(df2gg(result$err.logmu),aes(x=method,y=MSE))+geom_boxplot(aes(fill=method))+labs(x='')+ggtitle('log mu')

ggplot(df2gg(result$err.mu),aes(x=method,y=MSE))+geom_boxplot(aes(fill=method))+labs(x='')+ggtitle('mu')

ggplot(result$est.mu,aes(1:256))+geom_line(aes(y=smash,colour='smash'))+geom_line(aes(y=smashgen.haar,colour='smashgen.haar'))+geom_line(aes(y=smashgen.sym,colour='smashgen.symm8'))+geom_line(aes(y=mu,colour='mu'))+ggtitle('mu')+labs(x='',y='')+geom_point(aes(y=y),color='gray70',shape=1)+scale_colour_manual(values=c('black',"red", "green",'blue'))

ggplot(result$est.logmu,aes(1:256))+geom_line(aes(y=smash,colour='smash'))+geom_line(aes(y=smashgen.haar,colour='smashgen.haar'))+geom_line(aes(y=smashgen.sym,colour='smashgen.symm8'))+geom_line(aes(y=log(mu),colour='log mu'))+ggtitle('log mu')+labs(x='',y='')+scale_colour_manual(values=c('black',"red", "green",'blue'))

mu=DJ.EX(256,signal = 9)$heavi
mu=mu-min(mu)+1
result=simu_study_scale(mu,nsimu=100)
ggplot(df2gg(result$err.logmu),aes(x=method,y=MSE))+geom_boxplot(aes(fill=method))+labs(x='')+ggtitle('log mu')

ggplot(df2gg(result$err.mu),aes(x=method,y=MSE))+geom_boxplot(aes(fill=method))+labs(x='')+ggtitle('mu')

ggplot(result$est.mu,aes(1:256))+geom_line(aes(y=smash,colour='smash'))+geom_line(aes(y=smashgen.haar,colour='smashgen.haar'))+geom_line(aes(y=smashgen.sym,colour='smashgen.symm8'))+geom_line(aes(y=mu,colour='mu'))+ggtitle('mu')+labs(x='',y='')+geom_point(aes(y=y),color='gray70',shape=1)+scale_colour_manual(values=c('black',"red", "green",'blue'))

ggplot(result$est.logmu,aes(1:256))+geom_line(aes(y=smash,colour='smash'))+geom_line(aes(y=smashgen.haar,colour='smashgen.haar'))+geom_line(aes(y=smashgen.sym,colour='smashgen.symm8'))+geom_line(aes(y=log(mu),colour='log mu'))+ggtitle('log mu')+labs(x='',y='')+scale_colour_manual(values=c('black',"red", "green",'blue'))

mu=DJ.EX(256,signal = 15)$heavi
mu=mu-min(mu)+50
result=simu_study_scale(mu,nsimu=100)
ggplot(df2gg(result$err.logmu),aes(x=method,y=MSE))+geom_boxplot(aes(fill=method))+labs(x='')+ggtitle('log mu')

ggplot(df2gg(result$err.mu),aes(x=method,y=MSE))+geom_boxplot(aes(fill=method))+labs(x='')+ggtitle('mu')

ggplot(result$est.mu,aes(1:256))+geom_line(aes(y=smash,colour='smash'))+geom_line(aes(y=smashgen.haar,colour='smashgen.haar'))+geom_line(aes(y=smashgen.sym,colour='smashgen.symm8'))+geom_line(aes(y=mu,colour='mu'))+ggtitle('mu')+labs(x='',y='')+geom_point(aes(y=y),color='gray70',shape=1)+scale_colour_manual(values=c('black',"red", "green",'blue'))

ggplot(result$est.logmu,aes(1:256))+geom_line(aes(y=smash,colour='smash'))+geom_line(aes(y=smashgen.haar,colour='smashgen.haar'))+geom_line(aes(y=smashgen.sym,colour='smashgen.symm8'))+geom_line(aes(y=log(mu),colour='log mu'))+ggtitle('log mu')+labs(x='',y='')+scale_colour_manual(values=c('black',"red", "green",'blue'))

mu=DJ.EX(256,signal = 9)$doppler
mu=mu-min(mu)+1
result=simu_study_scale(mu,nsimu=100)
ggplot(df2gg(result$err.logmu),aes(x=method,y=MSE))+geom_boxplot(aes(fill=method))+labs(x='')+ggtitle('log mu')

ggplot(df2gg(result$err.mu),aes(x=method,y=MSE))+geom_boxplot(aes(fill=method))+labs(x='')+ggtitle('mu')

ggplot(result$est.mu,aes(1:256))+geom_line(aes(y=smash,colour='smash'))+geom_line(aes(y=smashgen.haar,colour='smashgen.haar'))+geom_line(aes(y=smashgen.sym,colour='smashgen.symm8'))+geom_line(aes(y=mu,colour='mu'))+ggtitle('mu')+labs(x='',y='')+geom_point(aes(y=y),color='gray70',shape=1)+scale_colour_manual(values=c('black',"red", "green",'blue'))

ggplot(result$est.logmu,aes(1:256))+geom_line(aes(y=smash,colour='smash'))+geom_line(aes(y=smashgen.haar,colour='smashgen.haar'))+geom_line(aes(y=smashgen.sym,colour='smashgen.symm8'))+geom_line(aes(y=log(mu),colour='log mu'))+ggtitle('log mu')+labs(x='',y='')+scale_colour_manual(values=c('black',"red", "green",'blue'))

mu=DJ.EX(256,signal = 15)$doppler
mu=mu-min(mu)+50
result=simu_study_scale(mu,nsimu=100)
ggplot(df2gg(result$err.logmu),aes(x=method,y=MSE))+geom_boxplot(aes(fill=method))+labs(x='')+ggtitle('log mu')

ggplot(df2gg(result$err.mu),aes(x=method,y=MSE))+geom_boxplot(aes(fill=method))+labs(x='')+ggtitle('mu')

ggplot(result$est.mu,aes(1:256))+geom_line(aes(y=smash,colour='smash'))+geom_line(aes(y=smashgen.haar,colour='smashgen.haar'))+geom_line(aes(y=smashgen.sym,colour='smashgen.symm8'))+geom_line(aes(y=mu,colour='mu'))+ggtitle('mu')+labs(x='',y='')+geom_point(aes(y=y),color='gray70',shape=1)+scale_colour_manual(values=c('black',"red", "green",'blue'))

ggplot(result$est.logmu,aes(1:256))+geom_line(aes(y=smash,colour='smash'))+geom_line(aes(y=smashgen.haar,colour='smashgen.haar'))+geom_line(aes(y=smashgen.sym,colour='smashgen.symm8'))+geom_line(aes(y=log(mu),colour='log mu'))+ggtitle('log mu')+labs(x='',y='')+scale_colour_manual(values=c('black',"red", "green",'blue'))

r=function(x,c){return((x-c)^2*(x>c)*(x<=1))}
f=function(x){return(0.8 − 30*r(x,0.1) + 60*r(x, 0.2) − 30*r(x, 0.3) +
500*r(x, 0.35) − 1000*r(x, 0.37) + 1000*r(x, 0.41) − 500*r(x, 0.43) +
7.5*r(x, 0.5) − 15*r(x, 0.7) + 7.5*r(x, 0.9))}
mu=f(1:256/256)
mu=mu*50-9
result=simu_study_scale(mu,nsimu=100)
ggplot(df2gg(result$err.logmu),aes(x=method,y=MSE))+geom_boxplot(aes(fill=method))+labs(x='')+ggtitle('log mu')

ggplot(df2gg(result$err.mu),aes(x=method,y=MSE))+geom_boxplot(aes(fill=method))+labs(x='')+ggtitle('mu')

ggplot(result$est.mu,aes(1:256))+geom_line(aes(y=smash,colour='smash'))+geom_line(aes(y=smashgen.haar,colour='smashgen.haar'))+geom_line(aes(y=smashgen.sym,colour='smashgen.symm8'))+geom_line(aes(y=mu,colour='mu'))+ggtitle('mu')+labs(x='',y='')+geom_point(aes(y=y),color='gray70',shape=1)+scale_colour_manual(values=c('black',"red", "green",'blue'))

ggplot(result$est.logmu,aes(1:256))+geom_line(aes(y=smash,colour='smash'))+geom_line(aes(y=smashgen.haar,colour='smashgen.haar'))+geom_line(aes(y=smashgen.sym,colour='smashgen.symm8'))+geom_line(aes(y=log(mu),colour='log mu'))+ggtitle('log mu')+labs(x='',y='')+scale_colour_manual(values=c('black',"red", "green",'blue'))

mu=f(1:256/256)
mu=mu*65+47
result=simu_study_scale(mu,nsimu=100)
ggplot(df2gg(result$err.logmu),aes(x=method,y=MSE))+geom_boxplot(aes(fill=method))+labs(x='')+ggtitle('log mu')

ggplot(df2gg(result$err.mu),aes(x=method,y=MSE))+geom_boxplot(aes(fill=method))+labs(x='')+ggtitle('mu')

ggplot(result$est.mu,aes(1:256))+geom_line(aes(y=smash,colour='smash'))+geom_line(aes(y=smashgen.haar,colour='smashgen.haar'))+geom_line(aes(y=smashgen.sym,colour='smashgen.symm8'))+geom_line(aes(y=mu,colour='mu'))+ggtitle('mu')+labs(x='',y='')+geom_point(aes(y=y),color='gray70',shape=1)+scale_colour_manual(values=c('black',"red", "green",'blue'))

ggplot(result$est.logmu,aes(1:256))+geom_line(aes(y=smash,colour='smash'))+geom_line(aes(y=smashgen.haar,colour='smashgen.haar'))+geom_line(aes(y=smashgen.sym,colour='smashgen.symm8'))+geom_line(aes(y=log(mu),colour='log mu'))+ggtitle('log mu')+labs(x='',y='')+scale_colour_manual(values=c('black',"red", "green",'blue'))

f=function(x){return(0.5 + 0.2*cos(4*pi*x) + 0.1*cos(24*pi*x))}
mu=f(1:256/256)
mu=mu*50-10
result=simu_study_scale(mu,nsimu=100)
ggplot(df2gg(result$err.logmu),aes(x=method,y=MSE))+geom_boxplot(aes(fill=method))+labs(x='')+ggtitle('log mu')

ggplot(df2gg(result$err.mu),aes(x=method,y=MSE))+geom_boxplot(aes(fill=method))+labs(x='')+ggtitle('mu')

ggplot(result$est.mu,aes(1:256))+geom_line(aes(y=smash,colour='smash'))+geom_line(aes(y=smashgen.haar,colour='smashgen.haar'))+geom_line(aes(y=smashgen.sym,colour='smashgen.symm8'))+geom_line(aes(y=mu,colour='mu'))+ggtitle('mu')+labs(x='',y='')+geom_point(aes(y=y),color='gray70',shape=1)+scale_colour_manual(values=c('black',"red", "green",'blue'))

ggplot(result$est.logmu,aes(1:256))+geom_line(aes(y=smash,colour='smash'))+geom_line(aes(y=smashgen.haar,colour='smashgen.haar'))+geom_line(aes(y=smashgen.sym,colour='smashgen.symm8'))+geom_line(aes(y=log(mu),colour='log mu'))+ggtitle('log mu')+labs(x='',y='')+scale_colour_manual(values=c('black',"red", "green",'blue'))

mu=f(1:256/256)
mu=mu*80+32
result=simu_study_scale(mu,nsimu=100)
ggplot(df2gg(result$err.logmu),aes(x=method,y=MSE))+geom_boxplot(aes(fill=method))+labs(x='')+ggtitle('log mu')

ggplot(df2gg(result$err.mu),aes(x=method,y=MSE))+geom_boxplot(aes(fill=method))+labs(x='')+ggtitle('mu')

ggplot(result$est.mu,aes(1:256))+geom_line(aes(y=smash,colour='smash'))+geom_line(aes(y=smashgen.haar,colour='smashgen.haar'))+geom_line(aes(y=smashgen.sym,colour='smashgen.symm8'))+geom_line(aes(y=mu,colour='mu'))+ggtitle('mu')+labs(x='',y='')+geom_point(aes(y=y),color='gray70',shape=1)+scale_colour_manual(values=c('black',"red", "green",'blue'))

ggplot(result$est.logmu,aes(1:256))+geom_line(aes(y=smash,colour='smash'))+geom_line(aes(y=smashgen.haar,colour='smashgen.haar'))+geom_line(aes(y=smashgen.sym,colour='smashgen.symm8'))+geom_line(aes(y=log(mu),colour='log mu'))+ggtitle('log mu')+labs(x='',y='')+scale_colour_manual(values=c('black',"red", "green",'blue'))

m=seq(0,1,length.out = 256)
h = c(4, 5, 3, 4, 5, 4.2, 2.1, 4.3, 3.1, 5.1, 4.2)
w = c(0.005, 0.005, 0.006, 0.01, 0.01, 0.03, 0.01, 0.01, 0.005,0.008,0.005)
t=c(.1,.13,.15,.23,.25,.4,.44,.65,.76,.78,.81)
f = c()
for(i in 1:length(m)){
  f[i]=sum(h*(1+((m[i]-t)/w)^4)^(-1))
}
mu=f*6+1
result=simu_study_scale(mu,nsimu=100)
ggplot(df2gg(result$err.logmu),aes(x=method,y=MSE))+geom_boxplot(aes(fill=method))+labs(x='')+ggtitle('log mu')

ggplot(df2gg(result$err.mu),aes(x=method,y=MSE))+geom_boxplot(aes(fill=method))+labs(x='')+ggtitle('mu')

ggplot(result$est.mu,aes(1:256))+geom_line(aes(y=smash,colour='smash'))+geom_line(aes(y=smashgen.haar,colour='smashgen.haar'))+geom_line(aes(y=smashgen.sym,colour='smashgen.symm8'))+geom_line(aes(y=mu,colour='mu'))+ggtitle('mu')+labs(x='',y='')+geom_point(aes(y=y),color='gray70',shape=1)+scale_colour_manual(values=c('black',"red", "green",'blue'))

ggplot(result$est.logmu,aes(1:256))+geom_line(aes(y=smash,colour='smash'))+geom_line(aes(y=smashgen.haar,colour='smashgen.haar'))+geom_line(aes(y=smashgen.sym,colour='smashgen.symm8'))+geom_line(aes(y=log(mu),colour='log mu'))+ggtitle('log mu')+labs(x='',y='')+scale_colour_manual(values=c('black',"red", "green",'blue'))

mu=f*10+50
result=simu_study_scale(mu,nsimu=100)
ggplot(df2gg(result$err.logmu),aes(x=method,y=MSE))+geom_boxplot(aes(fill=method))+labs(x='')+ggtitle('log mu')

ggplot(df2gg(result$err.mu),aes(x=method,y=MSE))+geom_boxplot(aes(fill=method))+labs(x='')+ggtitle('mu')

ggplot(result$est.mu,aes(1:256))+geom_line(aes(y=smash,colour='smash'))+geom_line(aes(y=smashgen.haar,colour='smashgen.haar'))+geom_line(aes(y=smashgen.sym,colour='smashgen.symm8'))+geom_line(aes(y=mu,colour='mu'))+ggtitle('mu')+labs(x='',y='')+geom_point(aes(y=y),color='gray70',shape=1)+scale_colour_manual(values=c('black',"red", "green",'blue'))

ggplot(result$est.logmu,aes(1:256))+geom_line(aes(y=smash,colour='smash'))+geom_line(aes(y=smashgen.haar,colour='smashgen.haar'))+geom_line(aes(y=smashgen.sym,colour='smashgen.symm8'))+geom_line(aes(y=log(mu),colour='log mu'))+ggtitle('log mu')+labs(x='',y='')+scale_colour_manual(values=c('black',"red", "green",'blue'))

sessionInfo()
R version 3.4.0 (2017-04-21)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 16299)
Matrix products: default
locale:
[1] LC_COLLATE=English_United States.1252 
[2] LC_CTYPE=English_United States.1252   
[3] LC_MONETARY=English_United States.1252
[4] LC_NUMERIC=C                          
[5] LC_TIME=English_United States.1252    
attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     
other attached packages:
[1] ggplot2_2.2.1    smashrgen_0.1.0  wavethresh_4.6.8 MASS_7.3-47     
[5] caTools_1.17.1   ashr_2.2-7       smashr_1.1-5    
loaded via a namespace (and not attached):
 [1] Rcpp_0.12.16        plyr_1.8.4          compiler_3.4.0     
 [4] git2r_0.21.0        workflowr_1.0.1     R.methodsS3_1.7.1  
 [7] R.utils_2.6.0       bitops_1.0-6        iterators_1.0.8    
[10] tools_3.4.0         digest_0.6.13       tibble_1.3.3       
[13] evaluate_0.10       gtable_0.2.0        lattice_0.20-35    
[16] rlang_0.1.2         Matrix_1.2-9        foreach_1.4.3      
[19] yaml_2.1.19         parallel_3.4.0      stringr_1.3.0      
[22] knitr_1.20          REBayes_1.3         rprojroot_1.3-2    
[25] grid_3.4.0          data.table_1.10.4-3 rmarkdown_1.8      
[28] magrittr_1.5        whisker_0.3-2       backports_1.0.5    
[31] scales_0.4.1        codetools_0.2-15    htmltools_0.3.5    
[34] assertthat_0.2.0    colorspace_1.3-2    labeling_0.3       
[37] stringi_1.1.6       Rmosek_8.0.69       lazyeval_0.2.1     
[40] munsell_0.4.3       doParallel_1.0.11   pscl_1.4.9         
[43] truncnorm_1.0-7     SQUAREM_2017.10-1   R.oo_1.21.0        
This reproducible R Markdown analysis was created with workflowr 1.0.1