Last updated: 2018-05-08

workflowr checks: (Click a bullet for more information)
  • R Markdown file: up-to-date

    Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

  • Environment: empty

    Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

  • Seed: set.seed(20180501)

    The command set.seed(20180501) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

  • Session information: recorded

    Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

  • Repository version: e61f55f

    Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

    Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
    
    Ignored files:
        Ignored:    .Rhistory
        Ignored:    .Rproj.user/
        Ignored:    log/
    
    Untracked files:
        Untracked:  analysis/overdis.Rmd
    
    Unstaged changes:
        Modified:   analysis/nugget.Rmd
    
    
    Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
Expand here to see past versions:
    File Version Author Date Message
    Rmd e61f55f Dongyue 2018-05-08 correction
    html 29467ba Dongyue 2018-05-08 correction
    Rmd 67b32c8 Dongyue 2018-05-08 correction
    html cb91cb1 Dongyue 2018-05-08 add robust
    Rmd 830cba5 Dongyue 2018-05-08 add robust


Gaussian models are not robust to outliers so the smash-gen algorithm does not converge when the nugget effect is large. One solution might be setting the very highest resolution wavelet coefficients to 0.

library(smashr)
library(wavethresh)
Warning: package 'wavethresh' was built under R version 3.4.3
Loading required package: MASS
WaveThresh: R wavelet software, release 4.6.8, installed
Copyright Guy Nason and others 1993-2016
Note: nlevels has been renamed to nlevelsWT
#' smash generaliation function(set the highest resolution wavelet coeffs to 0)


#' @param x: a vector of observations
#' @param sigma: standard deviations, scalar.
#' @param family: choice of wavelet basis to be used, as in wavethresh.
#' @param niter: number of iterations for IRLS
#' @param tol: tolerance of the criterion to stop the iterations
#' @param robust: whether set the highest resolution wavelet coeffs to 0

smash.gen=function(x,sigma,family='DaubExPhase',filter.number = 1, niter=30,tol=1e-2,robust=FALSE){
  mu=c()
  s=c()
  y=c()
  munorm=c()
  mu=rbind(mu,rep(mean(x),length(x)))
  s=rbind(s,rep(1/mu[1],length(x)))
  y0=log(mean(x))+(x-mean(x))/mean(x)
  #######set the highest resolution wavelet coeffs to 0
  if(robust){
    wds=wd(y0,family = family,filter.number = filter.number)
    wtd=threshold(wds, levels = wds$nlevels-1,  policy="manual",value = Inf) 
    y=rbind(y,wr(wtd))
  }else{
    y=rbind(y,y0)
  }
  for(i in 1:niter){
    vars=ifelse(s[i,]<0,1e-8,s[i,])
    mu.hat=smash.gaus(y[i,],sigma=sqrt(vars))#mu.hat is \mu_t+E(u_t|y)
    
    mu=rbind(mu,mu.hat)
    munorm[i]=norm(mu.hat-mu[i,],'2')
    if(munorm[i]<tol){
      break
    }
    #update m and s_t
    mt=exp(mu.hat)
    s=rbind(s,1/mt)
    y=rbind(y,log(mt)+(x-mt)/mt)
    
    
  }
  mu.hat=smash.gaus(y[i,],sigma = sqrt(sigma^2+ifelse(s[i,]<0,1e-8,s[i,])))
  return(list(mu.hat=mu.hat,mu=mu,s=s,y=y,munorm=munorm))
}

#' Simulation study comparing smash and smashgen

simu_study=function(m,sigma,seed=1234,
                    niter=30,family='DaubExPhase',tol=1e-2,
                    reflect=FALSE,robust=FALSE){
  set.seed(seed)
  lamda=exp(m+rnorm(length(m),0,sigma))
  x=rpois(length(m),lamda)
  #fit data
  smash.out=smash.poiss(x,reflect=reflect)
  smash.gen.out=smash.gen(x,sigma=sigma,niter=niter,family = family,tol=tol,robust=robust)
  return(list(smash.out=smash.out,smash.gen.out=exp(smash.gen.out$mu.hat),smash.gen.est=smash.gen.out,x=x,loglik=smash.gen.out$loglik))
}

Simulations

Left plot: original plot.

Right plot: setting the very highest resolution wavelet coefficients to 0.

m=c(rep(3,128), rep(5, 128), rep(6, 128), rep(3, 128))


par(mfrow = c(1,2))
simu.out=simu_study(m,1,seed=2132)
plot(simu.out$x,col = "gray80" ,ylab = '')
lines(simu.out$smash.gen.out, col = "red", lwd = 2)
lines(exp(m))
legend("topleft", 
       c("truth","smash-gen"), 
       lty=c(1,1), 
       lwd=c(1,1),
       cex = 1,
       col=c("black","red", "blue"))

simu.out=simu_study(m,1,seed=2132,robust = T)
plot(simu.out$x,col = "gray80" ,ylab = '')
lines(simu.out$smash.gen.out, col = "red", lwd = 2)
lines(exp(m))
legend("topleft", 
       c("truth","smash-gen"), 
       lty=c(1,1), 
       lwd=c(1,1),
       cex = 1,
       col=c("black","red", "blue"))

Expand here to see past versions of unnamed-chunk-3-1.png:
Version Author Date
cb91cb1 Dongyue 2018-05-08

#bumps
m=seq(0,1,length.out = 256)
h = c(4, 5, 3, 4, 5, 4.2, 2.1, 4.3, 3.1, 5.1, 4.2)
w = c(0.005, 0.005, 0.006, 0.01, 0.01, 0.03, 0.01, 0.01, 0.005,0.008,0.005)
t=c(.1,.13,.15,.23,.25,.4,.44,.65,.76,.78,.81)
f = c()
for(i in 1:length(m)){
  f[i]=sum(h*(1+((m[i]-t)/w)^4)^(-1))
}

par(mfrow = c(1,2))
simu.out=simu_study(f,1)
plot(simu.out$x,col = "gray80" ,ylab = '')
lines(simu.out$smash.gen.out, col = "red", lwd = 2)
lines(exp(f))
legend("topright", 
       c("truth","smash-gen"), 
       lty=c(1,1), 
       lwd=c(1,1),
       cex = 1,
       col=c("black","red", "blue"))
simu.out=simu_study(f,1,robust = T)
plot(simu.out$x,col = "gray80" ,ylab = '')
lines(simu.out$smash.gen.out, col = "red", lwd = 2)
lines(exp(f))
legend("topright", 
       c("truth","smash-gen"), 
       lty=c(1,1), 
       lwd=c(1,1),
       cex = 1,
       col=c("black","red", "blue"))

Expand here to see past versions of unnamed-chunk-4-1.png:
Version Author Date
29467ba Dongyue 2018-05-08
cb91cb1 Dongyue 2018-05-08

Session information

sessionInfo()
R version 3.4.0 (2017-04-21)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 16299)

Matrix products: default

locale:
[1] LC_COLLATE=English_United States.1252 
[2] LC_CTYPE=English_United States.1252   
[3] LC_MONETARY=English_United States.1252
[4] LC_NUMERIC=C                          
[5] LC_TIME=English_United States.1252    

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] wavethresh_4.6.8 MASS_7.3-47      smashr_1.1-1    

loaded via a namespace (and not attached):
 [1] Rcpp_0.12.16        knitr_1.20          whisker_0.3-2      
 [4] magrittr_1.5        workflowr_1.0.1     REBayes_1.3        
 [7] pscl_1.4.9          doParallel_1.0.11   SQUAREM_2017.10-1  
[10] lattice_0.20-35     foreach_1.4.3       ashr_2.2-7         
[13] stringr_1.3.0       caTools_1.17.1      tools_3.4.0        
[16] parallel_3.4.0      grid_3.4.0          data.table_1.10.4-3
[19] R.oo_1.21.0         git2r_0.21.0        iterators_1.0.8    
[22] htmltools_0.3.5     assertthat_0.2.0    yaml_2.1.19        
[25] rprojroot_1.3-2     digest_0.6.13       Matrix_1.2-9       
[28] bitops_1.0-6        codetools_0.2-15    R.utils_2.6.0      
[31] evaluate_0.10       rmarkdown_1.8       stringi_1.1.6      
[34] compiler_3.4.0      Rmosek_8.0.69       backports_1.0.5    
[37] R.methodsS3_1.7.1   truncnorm_1.0-7    

This reproducible R Markdown analysis was created with workflowr 1.0.1