Last updated: 2020-09-07

Checks: 7 0

Knit directory: smash-gen/

This reproducible R Markdown analysis was created with workflowr (version 1.5.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20180501) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data/.DS_Store

Untracked files:
    Untracked:  analysis/pln_smooth.Rmd
    Untracked:  analysis/smashadditive.Rmd
    Untracked:  analysis/talk1011.Rmd
    Untracked:  talk.Rmd
    Untracked:  talk.html
    Untracked:  talk.pdf

Unstaged changes:
    Modified:   analysis/binomial.Rmd
    Modified:   analysis/chipexo.Rmd
    Modified:   analysis/fda.Rmd
    Modified:   analysis/index.Rmd
    Modified:   analysis/protein.Rmd
    Modified:   analysis/r2.Rmd
    Modified:   analysis/sigma.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view them.

File Version Author Date Message
Rmd 0f60dad Dongyue Xie 2020-09-08 wflow_publish(“analysis/vst.Rmd”)
html 7386626 Dongyue Xie 2018-10-23 Build site.
Rmd 4ae0ded Dongyue Xie 2018-10-23 wflow_publish(“analysis/vst.Rmd”)
html a9755fb Dongyue Xie 2018-10-18 Build site.
Rmd adaace5 Dongyue Xie 2018-10-18 wflow_publish(“analysis/vst.Rmd”)
html d45f4a0 Dongyue Xie 2018-10-16 Build site.
Rmd 4c8fd13 Dongyue Xie 2018-10-16 vst analysis
html 50eeda4 Dongyue Xie 2018-10-16 Build site.
Rmd ce75cae Dongyue Xie 2018-10-16 vst analysis
html e24d0a7 Dongyue Xie 2018-10-16 Build site.
Rmd 0d956ea Dongyue Xie 2018-10-16 vst analysis

Introduction

Variance stablizing transformation.

\(E(X)=\mu\) and \(Var(X)=g(\mu)\), want to find \(f(\cdot)\) s.t \(Var(f(X))\) has constant variance. Consider the Taylor series expansion of \(f(X)\) around \(\mu\): \(f(X)\approx f(\mu)+(Y-\mu)f'(\mu)\) so we have \([f(X)-f(\mu)]^2\approx (X-\mu)^2(f'(\mu))^2 \Rightarrow Var(f(X))\approx Var(X)(f'(\mu))^2\).

For poisson distribution, \((f'(\mu))^2\propto \mu^{-1}\) so if we take \(Y=\sqrt{X}\) then \(Var(Y)\approx \frac{1}{4}\). This was original proposed by Bartlett in 1936.

For Binomial data, \((f'(\mu))^2\propto 1/(np(1-p))\) so if we take \(Y=sin^{-1}(\sqrt{X/n})\) then \(Var(Y)\approx \frac{1}{2}\).

Anscombe(1948) shows that for \(Y=\sqrt{X+c}\), \(Var(Y)\approx \frac{1}{4}[1+\frac{3-8c}{8\mu}+\frac{32c^2-52c+17}{2\mu^2}]]\). If take \(c=3/8\) and for large \(\mu\), \(Var(Y)\approx 1/4\). Also clearly, \(\lim_{\mu\to 0}Var(\sqrt{X+c})=0\).

mu=seq(0,10,length.out = 500)
ans=c()
sr=c()
set.seed(12345)
for (i  in 1:500) {
  x=rpois(1e6,mu[i])
  ans[i]=var(sqrt(x+3/8))
  sr[i]=var(sqrt(x))
}
plot(mu,ans,type='l',ylim=c(0,0.5),ylab='')
lines(mu,sr,col=4)
abline(a=0.25,b=0,lty=2)
legend('bottomright',c('anscombe','square root'),lty=c(1,1),col=c(1,4))

Version Author Date
e24d0a7 Dongyue Xie 2018-10-16

Apprently, if the mean is small say 1 or 2 then the transformed variable has variance smaller than 0.25. One way to adjust for small counts is to take all possibilities into account. For example, if we observe x=0, then we can assign the following variance to its transformation, let \(y\sim Poisson(\lambda)\): \(\frac{\int p(x=0;\lambda)var(\sqrt{y+c};\lambda)d\lambda}{\int p(x=0;\lambda)d\lambda}\). In practice we can generate a grid of discrete values and evaluate the above quantity.

for(i in c(0,1,2)){
 p0 = dpois(i,mu)
 p0 = p0/sum(p0)
 p0 = sum(p0*ans)
 print(p0)
}
[1] 0.1382905
[1] 0.2018222
[1] 0.2293388

Compare log and anscombe transformation

Poisson variance stablizing trasformations: square root and Anscombe transformation.

For vst, if we observe \(x=0\), then I use \(var(\sqrt{X+3/8})=0\) instead of \(1/4\).

vst_smooth=function(x,method,ep=1e-5){
  n=length(x)
  if(method=='sr'){
    x.t=sqrt(x)
    x.var=rep(1/4,n)
    x.var[x==0]=0
    mu.hat=(smashr::smash.gaus(x.t,sigma=sqrt(x.var)))^2
    
  }
  if(method=='anscombe'){
    x.t=sqrt(x+3/8)
    x.var=rep(1/4,n)
    x.var[x==0]=0
    mu.hat=(smashr::smash.gaus(x.t,sigma=sqrt(x.var)))^2-3/8
  }
  if(method=='log'){
    x.t=x
    x.t[x==0]=ep
    x.var=1/x.t
    x.t=log(x.t)
    mu.hat=exp(smashr::smash.gaus(x.t,sigma=sqrt(x.var)))
  }
  return(mu.hat)
}
simu_study=function(m,sig=0,nsimu=30,seed=12345){
  set.seed(seed)
  sr=c()
  an=c()
  ashp=c()
  for (i in 1:nsimu) {
    lambda=exp(log(m)+rnorm(n,0,sig))
    x=rpois(n,lambda)
    mu.sr=vst_smooth(x,'sr')
    mu.an=vst_smooth(x,'anscombe')
    mu.ash=smash_gen_lite(x,sigma = sig)
    sr=rbind(sr,mu.sr)
    an=rbind(an,mu.an)
    ashp=rbind(ashp,mu.ash)
  }
  return(list(sr=sr,an=an,ashp=ashp))
}

When there are a number of \(0s\) in the observation: (mean function (0.1,6))

library(ashr)
library(smashrgen)
spike.f = function(x) (0.75 * exp(-500 * (x - 0.23)^2) + 1.5 * exp(-2000 * (x - 0.33)^2) + 3 * exp(-8000 * (x - 0.47)^2) + 2.25 * exp(-16000 * 
    (x - 0.69)^2) + 0.5 * exp(-32000 * (x - 0.83)^2))
n = 512
t = 1:n/n
m = spike.f(t)

m=m*2+0.1
range(m)
[1] 0.100000 6.076316
result=simu_study(m)


mses=lapply(result, function(x){apply(x, 1, function(y){mean((y-m)^2)})})

par(mfrow=c(2,2))

for (j in 1:4) {
  plot(m,type='l',main='nugget=0')
lines(result$sr[j,],col=2)
lines(result$an[j,],col=3)
lines(result$ashp[j,],col=4)
legend('topright',c('mean','square root','anscombe','smashgen'),lty=c(1,1,1,1),col=c(1,2,3,4))

}

Version Author Date
7386626 Dongyue Xie 2018-10-23
d45f4a0 Dongyue Xie 2018-10-16
e24d0a7 Dongyue Xie 2018-10-16
boxplot(mses,names = c('square root','anscombe','smashgen'),main='nugget=0',ylab='MSE')

Version Author Date
7386626 Dongyue Xie 2018-10-23
########
result=simu_study(m,sig=1)


mses=lapply(result, function(x){apply(x, 1, function(y){mean((y-m)^2)})})

#unlist(lapply(mses, mean))

par(mfrow=c(2,2))
for (j in 1:4) {
  plot(m,type='l',main='nugget=1')
#lines(result$sr[1,],col=2)
lines(result$an[j,],col=3)
lines(result$ashp[j,],col=4)
legend('topright',c('mean','anscombe','smashgen'),lty=c(1,1,1),col=c(1,3,4))
#legend('topright',c('mean','square root','anscombe','smashgen'),lty=c(1,1,1,1),col=c(1,2,3,4))

}

Version Author Date
7386626 Dongyue Xie 2018-10-23
boxplot(mses,names = c('square root','anscombe','smashgen'),main='nugget=1',ylab='MSE')

Version Author Date
7386626 Dongyue Xie 2018-10-23
###############
m=m*20+30
range(m)
[1]  32.0000 151.5263
result=simu_study(m)

mses=lapply(result, function(x){apply(x, 1, function(y){mean((y-m)^2)})})

#unlist(lapply(mses, mean))

par(mfrow=c(2,2))

for (j in 1:4) {
  plot(m,type='l',main='nugget=0')
lines(result$sr[j,],col=2)
lines(result$an[j,],col=3)
lines(result$ashp[j,],col=4)
legend('topright',c('mean','square root','anscombe','smashgen'),lty=c(1,1,1,1),col=c(1,2,3,4))

}

Version Author Date
7386626 Dongyue Xie 2018-10-23
boxplot(mses,names = c('square root','anscombe','smashgen'),main='nugget=0',ylab='MSE')

Version Author Date
7386626 Dongyue Xie 2018-10-23

Step function

mean: (1,7)

m=c(rep(1,n/4),rep(5,n/4),rep(7,n/4),rep(1,n/4))

result=simu_study(m)

mses=lapply(result, function(x){apply(x, 1, function(y){mean((y-m)^2)})})

#unlist(lapply(mses, mean))

par(mfrow=c(2,2))

for (j in 1:4) {
  plot(m,type='l',main='nugget=1',ylim=c(-1,8))
#lines(result$sr[1,],col=2)
lines(result$an[j,],col=3)
lines(result$ashp[j,],col=4)
legend('topright',c('mean','anscombe','smashgen'),lty=c(1,1,1),col=c(1,3,4))
#legend('topright',c('mean','square root','anscombe','smashgen'),lty=c(1,1,1,1),col=c(1,2,3,4))

}

Version Author Date
7386626 Dongyue Xie 2018-10-23
boxplot(mses,names = c('square root','anscombe','smashgen'),main='nugget=0',ylab='MSE')

Version Author Date
7386626 Dongyue Xie 2018-10-23

Heavi Sine function

mean: (1,24)

m=wavethresh::DJ.EX(n)
m=m$heavi+15
range(m)
[1]  0.8749178 24.4167215
result=simu_study(m)

mses=lapply(result, function(x){apply(x, 1, function(y){mean((y-m)^2)})})

#unlist(lapply(mses, mean))

par(mfrow=c(2,2))

for (j in 1:4) {
  plot(m,type='l',main='nugget=1')
#lines(result$sr[1,],col=2)
lines(result$an[j,],col=3)
lines(result$ashp[j,],col=4)
legend('topright',c('mean','anscombe','smashgen'),lty=c(1,1,1),col=c(1,3,4))
#legend('topright',c('mean','square root','anscombe','smashgen'),lty=c(1,1,1,1),col=c(1,2,3,4))

}

Version Author Date
7386626 Dongyue Xie 2018-10-23
boxplot(mses,names = c('square root','anscombe','smashgen'),main='nugget=0',ylab='MSE')


sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS High Sierra 10.13.6

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] smashrgen_0.1.2  wavethresh_4.6.8 MASS_7.3-51.4    caTools_1.17.1.2
[5] smashr_1.2-7     ashr_2.2-38     

loaded via a namespace (and not attached):
 [1] Rcpp_1.0.2        compiler_3.6.1    later_1.0.0      
 [4] git2r_0.26.1      workflowr_1.5.0   bitops_1.0-6     
 [7] iterators_1.0.12  tools_3.6.1       digest_0.6.21    
[10] evaluate_0.14     lattice_0.20-38   rlang_0.4.5      
[13] Matrix_1.2-17     foreach_1.4.7     yaml_2.2.0       
[16] parallel_3.6.1    xfun_0.10         stringr_1.4.0    
[19] knitr_1.25        fs_1.3.1          rprojroot_1.3-2  
[22] grid_3.6.1        data.table_1.12.6 glue_1.3.1       
[25] R6_2.4.0          rmarkdown_1.16    mixsqp_0.1-97    
[28] magrittr_1.5      whisker_0.4       backports_1.1.5  
[31] promises_1.1.0    codetools_0.2-16  htmltools_0.4.0  
[34] httpuv_1.5.2      stringi_1.4.3     doParallel_1.0.15
[37] pscl_1.5.2        truncnorm_1.0-8   SQUAREM_2017.10-1