Last updated: 2018-05-30
workflowr checks: (Click a bullet for more information) ✔ R Markdown file: up-to-date
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
✔ Environment: empty
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
✔ Seed:
set.seed(20180501)
The command set.seed(20180501)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
✔ Session information: recorded
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
✔ Repository version: 3ecb2bb
wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: log/
Untracked files:
Untracked: analysis/binom.Rmd
Untracked: analysis/glm.Rmd
Untracked: analysis/overdis.Rmd
Untracked: analysis/smashtutorial.Rmd
Untracked: analysis/test.Rmd
Untracked: data/treas_bill.csv
Untracked: docs/figure/smashtutorial.Rmd/
Untracked: docs/figure/test.Rmd/
Unstaged changes:
Modified: analysis/ashpmean.Rmd
Modified: analysis/nugget.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | 3ecb2bb | Dongyue | 2018-05-30 | covariate iterative |
An iterative version of the algorithm described here. The iterative version is 1. estimate \(\mu\) and \(\sigma\) from residual using smash.gaus
; 2. estimate \(\beta\) and set residual=\(Y-X\hat\beta\).
We show the performance of smashgen(iterative version) when covariates exist. The signal-to-noise ratio(SNR) is fixed at 2. The length of sequence is \(n=256\).
simu_study_x=function(mu,beta,snr=2,nsimu=100,filter.number=1,family='DaubExPhase',seed=1234){
set.seed(1234)
n=length(mu)
p=length(beta)
X=matrix(rnorm(n*p,0,1),nrow=n,byrow = T)
cte=X%*%beta
sd.noise=sd(mu)/snr
sd.noise=ifelse(sd.noise==0,mean(mu),sd.noise)
mse.mu=c()
mse.beta=c()
mse.mu.iter=c()
mse.beta.iter=c()
for(i in 1:nsimu){
y=cte+mu+rnorm(n,0,sd.noise)
#########
s.out=smash.gaus.x(X,y,filter.number=filter.number,family=family)
mu.hat=s.out$mu.hat
beta.hat=s.out$beta.hat
mse.mu[i]=mse(mu,mu.hat)
mse.beta[i]=mse(beta,beta.hat)
#########
s.out.iter=smash.gaus.x(X,y,filter.number=filter.number,family=family,niter=30)
mu.hat.iter=s.out.iter$mu.hat
beta.hat.iter=s.out.iter$beta.hat
mse.mu.iter[i]=mse(mu,mu.hat.iter)
mse.beta.iter[i]=mse(beta,beta.hat.iter)
}
return(list(est=list(mu.hat=mu.hat,beta.hat=beta.hat,y=y,mu.hat.iter=mu.hat.iter,beta.hat.iter=beta.hat.iter),err=data.frame(mse.mu=mse.mu,mse.mu.iter=mse.mu.iter,mse.beta=mse.beta,mse.beta.iter=mse.beta.iter)))
}
library(smashrgen)
library(ggplot2)
n=256
mu=c(rep(1,64),rep(2,64),rep(5,64),rep(1,64))
beta=c(1,-2,-3,4,5)
beta=beta/norm(beta,'2')
result=simu_study_x(mu,beta)
par(mfrow=c(1,2))
boxplot(result$err[,1:2],main='Estimation of mu',ylab='MSE')
#boxplot(result$err$mse.mu.iter,main='Estimate of mu, iterative',ylab='MSE')
boxplot(result$err[,3:4],main='Estimation of beta',ylab='MSE')
#boxplot(result$err$mse.beta.iter,main='Estimate of beta, iterative',ylab='MSE')
plot(result$est$y,col='gray80',ylab = '',main='Estimated mu')
lines(mu)
lines(result$est$mu.hat,col=4)
plot(result$est$y,col='gray80',ylab = '',main='Estimated mu, iterative')
lines(mu)
lines(result$est$mu.hat.iter,col=4)
plot(beta,result$est$beta.hat,xlab = 'True beta', ylab = 'Beta hat',main='Beta')
abline(0,1)
plot(beta,result$est$beta.hat.iter,xlab = 'True beta', ylab = 'Beta hat',main='Beta, iterative')
abline(0,1)
f=function(x){return(0.5 + 0.2*cos(4*pi*x) + 0.1*cos(24*pi*x))}
mu=f((1:n)/n)
result=simu_study_x(mu,beta,filter.number = 8,family='DaubLeAsymm')
par(mfrow=c(1,2))
boxplot(result$err[,1:2],main='Estimation of mu',ylab='MSE')
#boxplot(result$err$mse.mu.iter,main='Estimate of mu, iterative',ylab='MSE')
boxplot(result$err[,3:4],main='Estimation of beta',ylab='MSE')
#boxplot(result$err$mse.beta.iter,main='Estimate of beta, iterative',ylab='MSE')
plot(result$est$y,col='gray80',ylab = '',main='Estimated mu')
lines(mu)
lines(result$est$mu.hat,col=4)
plot(result$est$y,col='gray80',ylab = '',main='Estimated mu, iterative')
lines(mu)
lines(result$est$mu.hat.iter,col=4)
plot(beta,result$est$beta.hat,xlab = 'True beta', ylab = 'Beta hat',main='Beta')
abline(0,1)
plot(beta,result$est$beta.hat.iter,xlab = 'True beta', ylab = 'Beta hat',main='Beta, iterative')
abline(0,1)
r=function(x,c){return((x-c)^2*(x>c)*(x<=1))}
f=function(x){return(0.8 − 30*r(x,0.1) + 60*r(x, 0.2) − 30*r(x, 0.3) +
500*r(x, 0.35) − 1000*r(x, 0.37) + 1000*r(x, 0.41) − 500*r(x, 0.43) +
7.5*r(x, 0.5) − 15*r(x, 0.7) + 7.5*r(x, 0.9))}
mu=f(1:n/n)
result=simu_study_x(mu,beta,filter.number = 8,family='DaubLeAsymm')
par(mfrow=c(1,2))
boxplot(result$err[,1:2],main='Estimation of mu',ylab='MSE')
#boxplot(result$err$mse.mu.iter,main='Estimate of mu, iterative',ylab='MSE')
boxplot(result$err[,3:4],main='Estimation of beta',ylab='MSE')
#boxplot(result$err$mse.beta.iter,main='Estimate of beta, iterative',ylab='MSE')
plot(result$est$y,col='gray80',ylab = '',main='Estimated mu')
lines(mu)
lines(result$est$mu.hat,col=4)
plot(result$est$y,col='gray80',ylab = '',main='Estimated mu, iterative')
lines(mu)
lines(result$est$mu.hat.iter,col=4)
plot(beta,result$est$beta.hat,xlab = 'True beta', ylab = 'Beta hat',main='Beta')
abline(0,1)
plot(beta,result$est$beta.hat.iter,xlab = 'True beta', ylab = 'Beta hat',main='Beta, iterative')
abline(0,1)
sessionInfo()
R version 3.4.0 (2017-04-21)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 16299)
Matrix products: default
locale:
[1] LC_COLLATE=English_United States.1252
[2] LC_CTYPE=English_United States.1252
[3] LC_MONETARY=English_United States.1252
[4] LC_NUMERIC=C
[5] LC_TIME=English_United States.1252
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] ggplot2_2.2.1 smashrgen_0.1.0 wavethresh_4.6.8 MASS_7.3-47
[5] caTools_1.17.1 ashr_2.2-7 smashr_1.1-5
loaded via a namespace (and not attached):
[1] Rcpp_0.12.16 plyr_1.8.4 compiler_3.4.0
[4] git2r_0.21.0 workflowr_1.0.1 R.methodsS3_1.7.1
[7] R.utils_2.6.0 bitops_1.0-6 iterators_1.0.8
[10] tools_3.4.0 digest_0.6.13 tibble_1.3.3
[13] evaluate_0.10 gtable_0.2.0 lattice_0.20-35
[16] rlang_0.1.2 Matrix_1.2-9 foreach_1.4.3
[19] yaml_2.1.19 parallel_3.4.0 stringr_1.3.0
[22] knitr_1.20 REBayes_1.3 rprojroot_1.3-2
[25] grid_3.4.0 data.table_1.10.4-3 rmarkdown_1.8
[28] magrittr_1.5 whisker_0.3-2 backports_1.0.5
[31] scales_0.4.1 codetools_0.2-15 htmltools_0.3.5
[34] assertthat_0.2.0 colorspace_1.3-2 stringi_1.1.6
[37] Rmosek_8.0.69 lazyeval_0.2.1 munsell_0.4.3
[40] doParallel_1.0.11 pscl_1.4.9 truncnorm_1.0-7
[43] SQUAREM_2017.10-1 R.oo_1.21.0
This reproducible R Markdown analysis was created with workflowr 1.0.1