Last updated: 2019-02-27
workflowr checks: (Click a bullet for more information) ✔ R Markdown file: up-to-date
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
✔ Environment: empty
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
✔ Seed:
set.seed(20180501)
The command set.seed(20180501)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
✔ Session information: recorded
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
✔ Repository version: 8df1f5a
wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: data/.DS_Store
Untracked files:
Untracked: analysis/chipexoeg.Rmd
Untracked: analysis/efsd.Rmd
Untracked: analysis/pre0221.Rmd
Untracked: analysis/talk1011.Rmd
Untracked: data/chipexo_examples/
Untracked: data/chipseq_examples/
Untracked: docs/figure/pre0221.Rmd/
Untracked: talk.Rmd
Untracked: talk.pdf
Unstaged changes:
Modified: analysis/binomial.Rmd
Modified: analysis/fda.Rmd
Modified: analysis/glmcovariate.Rmd
Modified: analysis/protein.Rmd
Modified: analysis/r2.Rmd
Modified: analysis/r2b.Rmd
Modified: analysis/sigma.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
Consider estimating spatially-structured \(\mu_t\) from Poisson sequence: \[Y_t\sim Poisson(\lambda_t).\] We assume that \(\lambda_t\) satisfies \[\lambda_t+c=(X_t'\beta+\mu_t)^2\], where \(X_t\) are \(p-\)dimensional covaraites and \(\beta\) is unknown coefficients.
Apply variance stablizing transformation(VST) to \(Y_t\). Let the transformed data be \(\tilde Y_t=\sqrt{Y_t+c}\) and apply smash.gaus allowing covariates method to \(\tilde Y_t\), which gives \(\hat\mu_t\) and \(\hat\beta\). The recovered smooth mean structure is given by \((\hat\mu_t)^2-c\).
Poisson sequence: Given \(\mu_t, t=1,2,\dots,T\), \(\lambda_t=(\mu_t+X_t'\beta+N(0,\sigma^2))^2-c\), generate \(Y_t\sim Poisson(\lambda_t)\).
The length of sequence \(T\) is set to be 256, covariates \(X_t\) are generate from \(N(0,I_{p\times p})\), and \(\beta\) is chosen to be \((1,2,-3,-4,5)\) then normalized to have unit norm. Signal-to-noise ratio(\(var(X\beta)/\sigma^2\)) is 3.
library(smashr)
smashgen_vst_x=function(y,X,sigma,c=3/8){
yy=sqrt(y+c)
H=solve(t(X)%*%X)%*%t(X)
beta.hat=H%*%yy
res=yy-X%*%beta.hat
if(missing(sigma)){
mu.hat=smash.gaus(res)
}else{
mu.hat=smash.gaus(res,sigma=sqrt(1/4+sigma^2))
}
yy2=yy-mu.hat
beta.hat=H%*%(yy2)
res=yy-X%*%beta.hat
if(missing(sigma)){
mu.hat=smash.gaus(res)
}else{
mu.hat=smash.gaus(res,sigma=sqrt(1/4+sigma^2))
}
yy3=yy-mu.hat
beta.hat=H%*%yy3
return(list(beta.hat=beta.hat,mu.hat=mu.hat))
}
mu=c(rep(2,64), rep(5, 64), rep(6, 64), rep(2, 64))
beta=c(1,2,-3,-4,5)
beta=beta/norm(beta,'2')
n=length(mu)
p=length(beta)
SNR=3
seed=1234
set.seed(seed)
X=matrix(rnorm(n*p,0,1),nrow=n,byrow = T)
Xbeta=X%*%beta
sigma=sqrt(var(Xbeta)/SNR)
lambda=(mu+Xbeta+rnorm(n,0,sigma))^2
yt=rpois(n,lambda)
fit=smashgen_vst_x(yt,X,,0)
plot(beta,fit$beta.hat,ylab = 'beta.hat',xlab = 'True Beta')
abline(a=0,b=1)
Version | Author | Date |
---|---|---|
f14f0f8 | Dongyue Xie | 2019-02-27 |
plot(fit$mu.hat,type='l',ylim = range(c(mu,fit$mu.hat)))
lines(mu,col='grey80')
Version | Author | Date |
---|---|---|
f14f0f8 | Dongyue Xie | 2019-02-27 |
m=seq(0,1,length.out = 256)
h = c(4, 5, 3, 4, 5, 4.2, 2.1, 4.3, 3.1, 5.1, 4.2)
w = c(0.005, 0.005, 0.006, 0.01, 0.01, 0.03, 0.01, 0.01, 0.005,0.008,0.005)
t=c(.1,.13,.15,.23,.25,.4,.44,.65,.76,.78,.81)
f = c()
for(i in 1:length(m)){
f[i]=sum(h*(1+((m[i]-t)/w)^4)^(-1))
}
mu=f*1.2
beta=c(1,2,-3,-4,5)
beta=beta/norm(beta,'2')
n=length(mu)
p=length(beta)
SNR=3
seed=12345
set.seed(seed)
X=matrix(rnorm(n*p,0,1),nrow=n,byrow = T)
Xbeta=X%*%beta
sigma=sqrt(var(Xbeta)/SNR)
lambda=(mu+Xbeta+rnorm(n,0,sigma))^2
yt=rpois(n,lambda)
fit=smashgen_vst_x(yt,X,,0)
plot(beta,fit$beta.hat,ylab = 'beta.hat',xlab = 'True Beta')
abline(a=0,b=1)
Version | Author | Date |
---|---|---|
f14f0f8 | Dongyue Xie | 2019-02-27 |
plot(fit$mu.hat,type='l',ylim = range(c(mu,fit$mu.hat)))
lines(mu,col='grey80')
Version | Author | Date |
---|---|---|
f14f0f8 | Dongyue Xie | 2019-02-27 |
f=function(x){return(0.5 + 2*cos(4*pi*x) + 2*cos(24*pi*x))}
mu=f(1:256/256)
mu=mu-min(mu)
beta=c(1,2,-3,-4,5)
beta=beta/norm(beta,'2')
n=length(mu)
p=length(beta)
SNR=3
seed=12345
set.seed(seed)
X=matrix(rnorm(n*p,0,1),nrow=n,byrow = T)
Xbeta=X%*%beta
sigma=sqrt(var(Xbeta)/SNR)
lambda=(mu+Xbeta+rnorm(n,0,sigma))^2
yt=rpois(n,lambda)
fit=smashgen_vst_x(yt,X,,0)
plot(beta,fit$beta.hat,ylab = 'beta.hat',xlab = 'True Beta')
abline(a=0,b=1)
Version | Author | Date |
---|---|---|
f14f0f8 | Dongyue Xie | 2019-02-27 |
plot(fit$mu.hat,type='l',ylim = range(c(mu,fit$mu.hat)))
lines(mu,col='grey80')
Version | Author | Date |
---|---|---|
f14f0f8 | Dongyue Xie | 2019-02-27 |
r=function(x,c){return((x-c)^2*(x>c)*(x<=1))}
f=function(x){return(0.8 - 30*r(x,0.1) + 60*r(x, 0.2) - 30*r(x, 0.3) +
500*r(x, 0.35) -1000*r(x, 0.37) + 1000*r(x, 0.41) - 500*r(x, 0.43) +
7.5*r(x, 0.5) - 15*r(x, 0.7) + 7.5*r(x, 0.9))}
mu=f(1:256/256)
mu=mu*7
beta=c(1,2,-3,-4,5)
beta=beta/norm(beta,'2')
n=length(mu)
p=length(beta)
SNR=3
seed=12345
set.seed(seed)
X=matrix(rnorm(n*p,0,1),nrow=n,byrow = T)
Xbeta=X%*%beta
sigma=sqrt(var(Xbeta)/SNR)
lambda=(mu+Xbeta+rnorm(n,0,sigma))^2
yt=rpois(n,lambda)
fit=smashgen_vst_x(yt,X,,0)
plot(beta,fit$beta.hat,ylab = 'beta.hat',xlab = 'True Beta')
abline(a=0,b=1)
Version | Author | Date |
---|---|---|
f14f0f8 | Dongyue Xie | 2019-02-27 |
plot(fit$mu.hat,type='l',ylim = range(c(mu,fit$mu.hat)))
lines(mu,col='grey80')
Version | Author | Date |
---|---|---|
f14f0f8 | Dongyue Xie | 2019-02-27 |
sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS High Sierra 10.13.6
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] smashr_1.2-0
loaded via a namespace (and not attached):
[1] Rcpp_1.0.0 knitr_1.20 whisker_0.3-2
[4] magrittr_1.5 workflowr_1.1.1 REBayes_1.3
[7] MASS_7.3-51.1 pscl_1.5.2 doParallel_1.0.14
[10] SQUAREM_2017.10-1 lattice_0.20-35 foreach_1.4.4
[13] ashr_2.2-7 stringr_1.3.1 caTools_1.17.1.1
[16] tools_3.5.1 parallel_3.5.1 grid_3.5.1
[19] data.table_1.11.6 R.oo_1.22.0 git2r_0.23.0
[22] iterators_1.0.10 htmltools_0.3.6 assertthat_0.2.0
[25] yaml_2.2.0 rprojroot_1.3-2 digest_0.6.18
[28] Matrix_1.2-14 bitops_1.0-6 codetools_0.2-15
[31] R.utils_2.7.0 evaluate_0.11 rmarkdown_1.10
[34] wavethresh_4.6.8 stringi_1.2.4 compiler_3.5.1
[37] Rmosek_8.0.69 backports_1.1.2 R.methodsS3_1.7.1
[40] truncnorm_1.0-8
This reproducible R Markdown analysis was created with workflowr 1.1.1